期刊文献+

Dirac猜想的一个反例 被引量:3

A counter-example to a conjecture of Dirac
原文传递
导出
摘要 从约束Hamilton系统相空间中对称性分析 ,给出一个反例 .首次用正则Noether恒等式说明Dirac猜想失效 。 Based on the canonical symmetries of constrained Hamiltonian systems, a counter-example to a conjecture of Dirac is given. Using the canonical first Noether theorem and canonical Noether identities, we have shown that Dirac's conjecture fails in that example. There is no linearization of constraint in our treatment.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2002年第5期943-945,共3页 Acta Physica Sinica
基金 北京市自然科学基金 (批准号 :1942 0 0 5 )资助的课题~~
关键词 约束HAMILTON系统 正则对称性 DIRAC猜想 量子力学 相空间 量子场论 constrained Hamiltonian systems, canonical symmetries, Dirac's conjecture
  • 相关文献

参考文献2

共引文献8

同被引文献25

  • 1COSTA M E V, GIROTTI H O, SIMOES T J M. Dynamics of gauge system and Dirac's conjecture[J]. Phys Rev, 1985, D32: 405-410. 被引量:1
  • 2CABO A. Dirac's conjecture for systems having only first-class constraints[J]. J Phys: A Math Gen, 1986, 19: 629-638. 被引量:1
  • 3ALLOCK G R. The intrinsic properties of rank and nullity of the Lagrange bracket in the one dimensional calculus of variations[J]. Phil Trans Roy Soc, 1975, A279: 485-545. 被引量:1
  • 4CAWLEY R. Detemination of the Hamiltonian in the presence of constraints[J]. Phys Rev Lett, 1979, 42: 413. 被引量:1
  • 5CAWLEY R. Augmented algorithm for the Hamiltonian[J]. Phys Rev, 1980, D21: 2988-2990. 被引量:1
  • 6FRENKEL A. Comment on Cawley's counterexample to a conjecture of Dirac[J]. Phys Rev, 1980, D21: 2986-2987. 被引量:1
  • 7LI Zi-ping. Symmetry in phase space for a system with a singular Lagrangian[J]. Phys Rev, 1994, E52: 876-887. 被引量:1
  • 8LI Zi-ping, LI Xin. Generalized Noether theorems and applications[J]. Int J Theor Phys, 1991, 30: 225-233. 被引量:1
  • 9QI Z. Dirac's constraint theory: Correction to alleged counterexamples[J]. Int J Theor Phys, 1990, 29: 1309-1312. 被引量:1
  • 10SUDARSHAN E C G, MUKUNDA N. Classical Dynamics: A Modern Perspective[M]. New York: Wiley, 1974. 被引量:1

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部