期刊文献+

拟弱滴状性质与弱紧性(英文)

Quasi-weak drop property and weak compactness
下载PDF
导出
摘要 引入了一种新的滴状性质 ,关于局部凸空间中有界闭凸集的拟弱滴状性质 ,利用Rolewicz所引进的流动序列 ,给出了Frechet空间中有界闭凸集的拟弱滴状性质的特征 由此 ,证明了拟弱滴状性质等价于弱紧性 这样 。 We introduce a new drop property,the quasi-weak drop property for closed bounded convex sets in locally convex spaces.Using streaming sequences introduced by Rolewicz,we give a characterisation of the quasi-weak drop property for closed bounded convex sets in Frechet spaces.From this,we prove that the quasi-weak drop property is equivalent to weak compactness.Thus a Frechet space is reflexive if and only if every closed bounded convex set in the space has the quasi-weak drop property.
作者 丘京辉
出处 《苏州大学学报(自然科学版)》 CAS 2002年第1期112-115,共4页 Journal of Soochow University(Natural Science Edition)
关键词 FRECHET空间 自反空间 拟弱滴状性质 弱紧集 Frechet space reflexive space quasi-weak drop property weakly compact set
  • 相关文献

参考文献11

  • 1[1]DANES J. A geometric theorem useful in nonlinear functional analysis[J]. Boll Un Mat It al, 1972,6:369- 372. 被引量:1
  • 2[2]GILES J R, KUTZAROVA D N. Characterisation of drop and weak drop properties for closed bounded convex set [J ]. Bull Austral Math Soc, 1991,43: 377 - 385. 被引量:1
  • 3[3]GILESJ R,SIMSB,YORKEAC. On the drop and weak drop properties for a Banach space[J]. BullAustral Math Soc, 1990,41:503 - 507. 被引量:1
  • 4[4]HORVATH J. Topological Vector Spaces and Distributions[ M]. MA: Addison-Wesley, 1966. 被引量:1
  • 5[5]JAMES R C. Weakly compact sets[J].Trans Amer Math Soc,1964,113:129- 140. 被引量:1
  • 6[6]KOTHE G. Topological Vector Spaces Ⅰ, Ⅱ [M].Berlin,Heidelberg:Springer-Verlag,1969,1979. 被引量:1
  • 7[7]KUTZAROVA D N. On the drop property of convex sets in Banach spaces[A]. Constructive theory offunctions 1987 [ C]. Sofia, 1988,283 - 287. 被引量:1
  • 8[8]QIU J H. Local completeness and dual local quasi-cormpleteness[J ]. Proc Amer Math Soc,2001,129:1419- 1425. 被引量:1
  • 9[9]PEREZ CARRERAS P, BONET J. Barrelled Locally Convex Spaces [ M ]. Amsterdam: North-Holland Math, 1987. 被引量:1
  • 10[10]ROLEWICA S. On drop property[J].Studia Math,1987,85:27-35. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部