期刊文献+

基于二进神经网络的0/1分布系统可靠性分析 被引量:2

Reliability of Systems with 0/1 Distribution Based on Binary Neural Networks
下载PDF
导出
摘要 系统可靠性的计算依赖于各基本单元的0/1分布关系及其构成的布尔逻辑.本文利用二进神经网络可以完备实现布尔逻辑的特性,提出一种基于二进神经网络的可靠性分析方法.该方法针对每个二进神经元的输入都是0/1逻辑关系的线性组合这一特点,提出并且证明了0/1分布的线性组合的概率分布函数;建立系统功能与布尔函数问的等价关系,将系统转化为相应的二进神经网络;利用线性组合的概率分布函数,通过逐层计算该二进神经网络的0/1输出概率,解决了一股系统的可靠性计算问题. The computing of system reliability relies on the relationship of 0/1 distribution of components and their boolean logic. With the help of the characteristic that binary neural networks can complete the whole boolean function, we propose a method of reliability analysis based on binary neural networks. According to the input of every binary neuron is a 0 or 1 logic variable, we provide and prove the distribution function of the linear combination of 0/1 distribution. Then the equivalent relation between the system function and boolean function is established, and the system is converted to an equivalent binary neural network. As a result, using the distribution function, we can successfully resolve the problem of reliability analysis of general systems by computing the 0/1 output probability layer by layer.
出处 《自动化学报》 EI CSCD 北大核心 2014年第7期1472-1480,共9页 Acta Automatica Sinica
基金 安徽省自然科学基金项目(1408085QF117) 合肥工业大学博士专项科研资助基金(2013HGBZ0182) 合肥工业大学青年教师创新项目(2013HGQC0019)资助~~
关键词 二进神经网络 系统可靠性 分布函数 线性组合 Binary neural networks system reliability distribution function linear combination
  • 相关文献

参考文献6

二级参考文献39

  • 1田华,陈森林,张军英.前向神经网络的分类能力的实验研究[J].微电子学与计算机,2004,21(7):99-101. 被引量:3
  • 2陆阳,韩江洪,张维勇.二进神经网络中笛卡尔球的研究[J].模式识别与人工智能,2004,17(3):368-373. 被引量:3
  • 3程辉.逻辑神经元网络[J].模式识别与人工智能,1993,6(4):300-306. 被引量:5
  • 4张军英,梁军利,保铮.强混叠模式下基于神经元捕获/抑制原理的分类器设计[J].电子学报,2006,34(12):2154-2160. 被引量:4
  • 5Fu L M,IEEE Trans on System Man and Cybernetics,1994年,28卷,8期,1114页 被引量:1
  • 6Chen Fangyue, Chen Guanrong, He Guolong. Universal Perceptron and DNA-Like Learning Algorithm for Binary Neural Networks: LSBF and PBF Implementations [J]. IEEE Transactions on Neural Network, 2009, 20(10): 1645-1658. 被引量:1
  • 7Chen Fangyue, Chen Guanrong, He Qinbin. Universal Perceptron and DNA-Like Learning Algorithm for Binary Neural Networks: Non-LSBF Implementation [J]. IEEE Transactions on Neural Network, 2009, 20(8): 1293-1301. 被引量:1
  • 8Changbing Tang, Fangyue Chert, Xiang Li. Perceptron implementation of Triple-Valued logic operations [J]. IEEE Transaction on Circuits and Systems-ll: Express Brieh 2011, 58(9): 590-594. 被引量:1
  • 9Lu Yang, Yang Juan, Wang Qiang, Huang Zhenjin. The upper bound of the minimal number of hidden nodes in parity problem by neural networks [J]. Science in China Ser.F Information Sciences, to be published. 被引量:1
  • 10Naredra S. Chaudhari, Aruna Tiwari. Binary Neural Network classifier and it's bound for the number of hidden layer neurons [A] International conference on Control Automation Robotics and Vision [C]. Singapore, 2010-12. 被引量:1

共引文献8

同被引文献3

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部