摘要
本文通过引入合适的保角映射函数,充分利用复变函数方法和解析函数理论,研究一维六方准晶中正方形孔边两不对称裂纹的反平面问题。在孔周及裂纹面为自由表面的假设下,结合数值保角映射函数和复变函数中的Cauchy积分公式,得到声子场和相位子场耦合作用下复势函数的近似解,并且给出裂纹尖端应力强度因子和能量释放率的显示表达式。数值算例讨论裂纹长度和正方形边长对场强度因子的影响规律。
By introducing a conformal mapping function and using the complex variable function method ,the anti-plane problem of double cracks originating from a square hole in one -dimensional hexagonal quasicrystals is investigated .Under the assumption that the surfaces of the hole and crack are traction -free ,combined with Cauchy's integral and the numerical conformal mapping ,the approxi-mate solutions of the complex potentials for the phonon and phase fields are given .Moreover ,the ex-pressions of the field intensity factors and the energy release rate near the crack tip are obtained .Nu-merical examples are provided to discuss the effects of the cracks length and the side length of square on the field intensity factors .
出处
《内蒙古工业大学学报(自然科学版)》
2014年第2期81-87,共7页
Journal of Inner Mongolia University of Technology:Natural Science Edition
基金
国家自然科学基金(11262012
11262017)
内蒙古工业大学科学研究项目(ZD201219)
关键词
一维六方准晶
场强度因子
数值保角映射
裂纹
正方形孔口
One-dimensional hexagonal quasicrystals
Stress intensity factors
Numerical confor-mal mapping
Cracks
Square Hole