期刊文献+

基于空间分割的数据简化和分类 被引量:2

Data Reduction and Classification Based on Spatial Partitioning
下载PDF
导出
摘要 数据简化的目的是简化数据集并保留有用的分类结构 .本文提出一个基于空间分隔的数据简化和分类算法 ,该算法将常规数据库的记录映射到多维空间上 ,从而将数据简化过程转变成在多维空间中同类数据的空间合并问题 ,也就是多维空间中不同类数据的空间分隔问题 ,最终得到一系列分隔空间 ,达到数据简化和分类的作用 .该方法用现实世界的 7个数据集进行评估 ,并与 C4.5所获得的结果进行比较 ,效果是显著的 。 The proposal of data reduction is to make data sets smaller but preserves classification structures of interest. A novel approach to data reduction and classification based on spatial partition is proposed in this paper. This algorithm projects conventional database relations into multidimensional space. The advantage of this approach is to change the data reducing process into spatial merging process of data in same class, as well as spatial partitioning process of data in different classes in multidimensional space. A series of partitioned regions are obtained eventually and can be easily used in data classification. The proposed method was evaluated using 7 real world data sets. The results were quite remarkable compared with those obtained by C4.5.
作者 郭躬德
出处 《小型微型计算机系统》 CSCD 北大核心 2002年第4期456-459,共4页 Journal of Chinese Computer Systems
基金 中英文化交流基金资助 ( ACADEMIC L INKS WITH CHINA SCHEME ( ALCS) Ref:CTN/ 992 / 2 44)
关键词 数据简化 相似性 多维空间 数据分类 空间分割 数据库 data reduction classification similarity multidimensional space partition hyper relation
  • 相关文献

参考文献8

  • 1[1]Weiss,S.M.,Indurkhya,N.Predictive data mining:a practi cal guide[Z].Morgan Kaufmann Publishers.Inc.1997. 被引量:1
  • 2[2]Fayyad,U.M.Editorial.Data mining and knowledge discovery [J].- an international journal 1997,1(3). 被引量:1
  • 3[3]Hui Wang,Ivo Duntsch,David Bell.Data reduction based on by per relations[C].In Proceedings of KDD98,New York,349~353. 被引量:1
  • 4[4]Gongde Guo,Hui Wang,David Bell.Data ranking based on spa tial partitioning[C].In Proceedings of IDEAL2000,HongKong,Springer-Verlag Berlin Heidelberg 2000,78~84. 被引量:1
  • 5[5]Gratzer.G.General lattice theory[M].Basel:Birkhauser.1978. 被引量:1
  • 6[6]Wolpert.D.H.The relationship between occam' s razor and convergent guessing[J ].Complex Systerms 1990.4:319~ 368. 被引量:1
  • 7[7]Ullman,J.D.Principles of database systems [M].Computer Science Press,2 Edition.1983. 被引量:1
  • 8[8]Duntsch,l.,and Gediga,G.Algebraic aspects of attribute de pendencies in information systems [J].Fundamenta lnformaticae 1997.29:119~ 133. 被引量:1

同被引文献5

  • 1陈兆国.时间序列及其谱分析[M].北京:科学出版社,1998.. 被引量:3
  • 2ZAKI J.Scalable algorithms for association mining[J].IEEE Trans on Knowledge and Data Eng,2001. 被引量:1
  • 3AGRAWAL R,FALOUTSCS C,SWAMI A.Efficient similarity search in sequence databases[C]//Proc of the Fourth International Conference on Foundations of Data Organization and Algorithms,1993. 被引量:1
  • 4田铮.动态数据处理的理论与方法-时间序列分析[M].西安:西北大学出版社,2001. 被引量:1
  • 5GANTI V,GEHRKE J,RAMAKRISHNAN R.DEMO:mining and monitoring evolving data[J].IEEE Trans on Knowledge and Data Eng,2001. 被引量:1

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部