期刊文献+

基于进化规划的区间系统卡尔曼滤波

Kalman Filtering for Interval System Using Evolutionary Programming
下载PDF
导出
摘要 对不确定系统的最优鲁棒滤波问题 ,提出了一种新的方法———进化规划 (EP)卡尔曼滤波 .该方法采用EP全局寻优技术 ,搜索最优估计区间 ;也采用EP全局最优技术 ,确定工程中可实现的最优估计标称值 .这种新方法的假设条件与标准的卡尔曼滤波完全相同 ,并具有标准的卡尔曼滤波相同的递推结构、相同的最优性 .最后 ,给出计算仿真的例子 ,并与文 [1]的仿真结果进行了比较 .结果表明 ,本文提出的新方法更精确 。 This paper develops a robust Kalman filtering algorithm by incorporating with the evolutionary programming (EP) technique for interval systems containing uncertainties. Based on the global optima_searching capability of EP, the new filtering algorithm is able to find the optimal Kalman filtering results at every iteration. The upper and lower boundaries and the nominal trajectory of the optimal estimates of the system state vectors are computed by the new algorithm, under the same statistical conditions while yielding the same optimal estimates as the conventional Kalman filtering scheme. A typical computer simulation example is included for comparison with the interval Kalman filtering method, which shows that the new algorithm is more accurate and less conservative.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2002年第2期193-196,共4页 Control Theory & Applications
关键词 进化规划 区间系统 卡尔曼滤波 离散系统 interval systems evolutionary programming Kalman filtering
  • 相关文献

参考文献9

  • 1Chen G, Wang J W and Shieh L S. Interval Kalman filtering [J]. IEEE Trans. Aerospace Electron. Systems, 1997,33(1):232-240 被引量:1
  • 2Zhang X F, Heemink A W and Van Eijkeren J C H. Performance robustness analysis of Kalman filter for liner discretetime systems under plant and noise uncertainty [J]. Int. J. of Systems Science, 1995,26(2):257-275 被引量:1
  • 3Xie L, Soh Y C and Desouza C M. Robust Kalman filtering for uncertain discrete-time systems [J]. IEEE Trans. Automat. Contr., 1994,39(3):1310-1314 被引量:1
  • 4Hong L. Distributed filtering using set models for systems with non-Gaussian [A]. Chen G, ed. Approximate Kalman Filtering [M]. Singapore: World Scientific Publishing Co., 1993,161-176 被引量:1
  • 5Morrel D. Distributed Kalman filtering [A]. Chen G, ed. Approximate Kalman Filtering [M]. Singapore: World Scientific Publishing Co.,1993,139-160 被引量:1
  • 6Nagpal K M and Khargonekar P. Filtering and smoothing an H∞ setting[J]. IEEE Trans. Automat. Contr., 1991,36(2):152-166 被引量:1
  • 7Xie L, Souza C E de and Fu M. H∞ estimation for discretetime linear uncertain systems [J]. Int. J. of Robust Nonlinear Control, 1991,1(6):111-123 被引量:1
  • 8Cao Y J. Eigenvalue optimization problems via evolutionary programming[J]. Electronics Letters, 1997,33(2):642-643 被引量:1
  • 9Eiben A E, Hinterding R and Michalewicz Z. Parameter control in evolutionary algorithms [J]. IEEE Trans. Evolutionary Computation,1999,7(7):124-141 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部