期刊文献+

UNCONDITIONALLY SUPERCLOSE ANALYSIS OF A NEW MIXED FINITE ELEMENT METHOD FOR NONLINEAR PARABOLIC EQUATIONS 被引量:2

原文传递
导出
摘要 This paper develops a framework to deal with the unconditional superclose analysis of nonlinear parabolic equation.Taking the finite dement pair Q11/Q01×Q10 as an example, a new mixed finite element method (FEM)is established and the r-independent superclose results of the original variable u in Hi-norm and the flux variable q=-a(u)■u in L^2- norm are deduced (τ is the temporal partition parameter).A key to our analysis is all error splitting technique,with which the time-discrete and the spatial-discrete systems are constructed,respectively.For the first system,tile boundedness of the temporal errors are obtained.For the second system,the spatial superclose results are presented unconditionally.while the previous literature always only obtain the convergent estimates or require certain time step conditions.Finally,some numerical results are provided to confirm the theoretical analysis,and show the efficiency of the proposed method.
出处 《Journal of Computational Mathematics》 SCIE CSCD 2019年第1期1-17,共17页 计算数学(英文)
基金 Natural Science Foundation of China (Grant Nos.11671369,11271340).
  • 相关文献

参考文献5

二级参考文献51

共引文献88

同被引文献19

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部