期刊文献+

关于分布式数据库准确分类仿真研究 被引量:2

Research on Accurate Classification and Simulation of Distributed Databases
下载PDF
导出
摘要 对分布式数据库进行准确分类,能够有效提高数据的利用率。对数据库的准确分类,需通过近似函数计算后验概率,根据概率结果,完成数据库的准确分类。传统方法通过构造查询矩阵和相似度矩阵,确定数据库准确分类的策略,但忽略了后验概率的计算,导致分类效果不显著。在云计算平台下,提出基于Parzen窗估计模型的分布式数据库准确分类方法,在分析分布式数据库分类系统原理模型基础上,利用Parzen窗估计模型确定分布式数据库区间样本的类别条件概率密度函数,通过插值法设计类别条件概率密度函数的近似函数,并利用此近似函数计算数据库分类样本后验概率,根据概率结果,实现分布式数据库分类。通过计算数据库分类结果的亲和力,并将分类结果亲和力与设定阈值进行对比,实现分布式数据库准确分类。实验结果表明,所提方法分类准确度较高,且分类过程较简单。 To accurately classify distributed database can effectively improve the utilization rate of data. The traditional method constructs the query matrix and similarity matrix and determines the strategy of accurate classification for database,but ignores the calculation of posterior probability,which results in the insignificant classification effect.In cloud computing platform,this article puts forward an accurate classification method of distributed database based on Parzen window estimation model. Based on the analysis of the principle model of classification system in distributed database,this research used Parzen window estimation model to determine the probability density function of class condition of interval sample in distributed database. Then,our research used the interpolation method to design the approximate function of probability density function of class condition and used this approximate function to calculate the posterior probability of classification sample in database. According to the probability result,the research realized the classification of distributed database. By calculating the affinity of database classification result and comparing the affinity of classification result with the set threshold,we achieved the accurate classification of distributed database.Simulation results show that the proposed method has high classification accuracy and simple classification process.
作者 曹曼曼 汪勉 CAO Man-man;WANG Mian(Department of Computer Science,Jining University,Qufu Shandong 273155,China;Institute of Scientific and Technical Information of Jining,Jining Shandong 272000,China)
出处 《计算机仿真》 北大核心 2019年第1期354-357,共4页 Computer Simulation
关键词 云计算平台 分布式 数据库 准确分类 Cloud computing platform Distributed Database Accurate classification
  • 相关文献

参考文献9

二级参考文献65

  • 1莫宏伟,吕淑萍,管凤旭,徐立芳,叶秀芬,马忠丽,王辉.基于人工免疫网络记忆的新型分类器研究[J].计算机工程与应用,2004,40(36):28-32. 被引量:17
  • 2位耀光,郑德玲,付冬梅,周颖.基于生物免疫系统克隆选择机理和免疫网络理论的免疫算法[J].北京科技大学学报,2005,27(2):245-249. 被引量:10
  • 3Quinlan, J.R. C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann, 1993. 被引量:1
  • 4Mehta, M., Agrawal, R., Rissanen, J. SLIQ: a fast scalable classifier for data mining. In: Apers, P., Bouzeghoub, M., Gardarin, G., eds. Proceedings of the 5th International Conference on Extending Database Technology. Berlin: Springer-Verlag, 1996. 18~32. 被引量:1
  • 5Wang, M., Iyer, B., Vitter, J.S. Scalable mining for classification rules in relational databases. In: Eaglestone, B., Desai, B.C., Shao, Jian-hua, eds. Proceedings of the 1998 International Database Engineering and Applications Symposium. Wales: IEEE Computer Society, 1998. 58~67. 被引量:1
  • 6Liu, B., Hsu, W., Ma, Y. Integrating classification and association rule mining. In: Agrawal, R., ed. Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining. New York: AAAI Press, 1998. 80~86. 被引量:1
  • 7Agrawal, R., Shim, K. Developing tightly-coupled data mining applications on a relational database system. In: Simoudis, E., ed. Proceedings of the 2nd International Conference on Knowledge Discovery in Databases and Data Mining. Cambridge, MA: AAAI Press, 1996. 112~118. 被引量:1
  • 8Meretakis, D., Wüthrich, B. Extending Naive Bayes classifiers using long itemsets. In: Chaudhuri, S., ed. Proceedings of the 5th International Conferenceon Knowledge Discovery and Data Mining. San Diego, CA: AAAI Press, 1999. 295~301. 被引量:1
  • 9Friedman, N., Geiger, D., Goldszmidt, M. Bayesian network classifier. Machine Learning, 1997,29(1):131~163. 被引量:1
  • 10钟燕飞,张良培,李平湘.基于多值免疫网络的多光谱遥感影像分类[J].计算机学报,2007,30(12):2181-2188. 被引量:18

共引文献61

同被引文献26

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部