期刊文献+

Intelligent checking model of Chinese radiotelephony read-backs in civil aviation air traffic control 被引量:6

Intelligent checking model of Chinese radiotelephony read-backs in civil aviation air traffic control
原文传递
导出
摘要 Federal Aviation Administration(FAA) and NASA technical reports indicate that the misunderstanding in radiotelephony communications is a primary causal factor associated with operation errors, and a sizable proportion of operation errors lead to read-back errors. We introduce deep learning method to solve this problem and propose a new semantic checking model based on Long Short-Time Memory network(LSTM) for intelligent read-back error checking. A meanpooling layer is added to the traditional LSTM, so as to utilize the information obtained by all the hidden activation vectors, and also to improve the robustness of the semantic vector extracted by LSTM. A MultiLayer Perceptron(MLP) layer, which can maintain the information of different regions in the concatenated vectors obtained by the mean-pooling layer, is applied instead of traditional similarity function in the new model to express the semantic similarity of the read-back pairs quantitatively. The K-Nearest Neighbor(KNN) classifier is used to verify whether the read-back pairs are consistent in semantics according to the output of MLP layer. Extensive experiments are conducted and the results show that the proposed model is more effective and more robust than the traditional checking model to verify the semantic consistency of read-backs automatically. Federal Aviation Administration(FAA) and NASA technical reports indicate that the misunderstanding in radiotelephony communications is a primary causal factor associated with operation errors, and a sizable proportion of operation errors lead to read-back errors. We introduce deep learning method to solve this problem and propose a new semantic checking model based on Long Short-Time Memory network(LSTM) for intelligent read-back error checking. A meanpooling layer is added to the traditional LSTM, so as to utilize the information obtained by all the hidden activation vectors, and also to improve the robustness of the semantic vector extracted by LSTM. A MultiLayer Perceptron(MLP) layer, which can maintain the information of different regions in the concatenated vectors obtained by the mean-pooling layer, is applied instead of traditional similarity function in the new model to express the semantic similarity of the read-back pairs quantitatively. The K-Nearest Neighbor(KNN) classifier is used to verify whether the read-back pairs are consistent in semantics according to the output of MLP layer. Extensive experiments are conducted and the results show that the proposed model is more effective and more robust than the traditional checking model to verify the semantic consistency of read-backs automatically.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第12期2280-2289,共10页 中国航空学报(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.61502498,U1433120 and 61806208) the Fundamental Research Funds for the Central Universities,China(No.3122017001)
关键词 Air traffic control Chinese radiotelephony read-backs LSTM Mean pooling MLP Semantic checking Air traffic control Chinese radiotelephony read-backs LSTM Mean pooling MLP Semantic checking
  • 相关文献

参考文献1

共引文献3

同被引文献86

引证文献6

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部