期刊文献+

3-Dimensional Skew-symmetric Algebras and the Variety of Horn-Lie Algebras

原文传递
导出
摘要 An algebra is called skew-symmetric if its multiplication operation is a skew-symmetric bilinear application.We determine all these algebras in dimension 3 over a field of characteristic different from 2.As an application,we determine the subvariety of 3-dimensional Horn-Lie algebras.For this type of algebra,we study also the case of dimension 4.
机构地区 LMIA
出处 《Algebra Colloquium》 SCIE CSCD 2018年第4期547-566,共20页 代数集刊(英文版)
  • 相关文献

参考文献1

二级参考文献17

  • 1Aizawa N, Sato H. q-deformation of the Virasoro algebra with central extension. Phys Lett B, 1991, 256:185. 被引量:1
  • 2Guo L. Operated semigroups, Motzkin paths and rooted trees. J Algebraic Combin, 2009, 29:35-62. 被引量:1
  • 3Guo L, Zheng S. Free involutive Horn-associative algebras and Poincard-Birkhoff-Witt theorem. (In preparation). 被引量:1
  • 4Hartwig J, Larsson D, Silvestrov S. Deformations of Lie algebras using (r-derivations. J Algebra, 2006, 295:314- 361. 被引量:1
  • 5Hellstrom L, Makhlouf A, Silvestrov S. Universal algebra applied to Hom-associative algebras, and more. Algebra Geom Math Phys, 2014, 85:157- 199. 被引量:1
  • 6Hu N. q-Witt algebras, q-Lie algebras, q-holomorph structure and representations. Algebra Colloq, 1999, 6:51 -70. 被引量:1
  • 7Liu K. Characterizations of quantum Witt algebra. Lett Math Phys, 1992, 24:257 -265. 被引量:1
  • 8MacLane S. Categories for the Working Mathematician. New York: Springer-Verlag, 1971. 被引量:1
  • 9Makhlouf A. Hom-dendriform algebras and Rota-Baxter Horn-algebras. Nankai Set Pure Appl Math Theor Phys, 2012, 9:147 -171. 被引量:1
  • 10Makhlouf A, Silvestrov S. Horn-algebras and Hom-coalgebras. J Algebra Appl, 2010, 9:553 -589. 被引量:1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部