期刊文献+

基于非凸优化模型的块稀疏信号恢复条件 被引量:2

Improved Conditions for Block-Sparse Signal Recovery via the Non-Convex Optimization Model
下载PDF
导出
摘要 压缩感知(compressed sensing,CS)是一种全新的信息采集与处理理论,它表明稀疏信号能够在远低于Shannon-Nyquist采样率的条件下被精确重构.现从压缩感知理论出发,对块稀疏信号重构算法进行研究,通过混合l2/lq(0 <q≤1)极小化方法,利用块-限制等距性质建立一类改进的精确恢复条件(无噪声情形),并给出有噪声情形下的误差分析结果. Compressed sensing(CS) is a newly developed theoretical framework for information acquisition and processing,which shows that sparse signals can be recovered exactly from far less samples than those required by the classical Shannon-Nyquist theorem.The block-sparse signal recovery algorithm under the compressed sensing framework was mainly studied,and a class of improved exact recovery conditions based on the block restricted isometry property(RIP) were established in the noiseless cases via the mixed l2/lq(0<q≤1)norm minimization.Furthermore,the error analysis results were given in the noisy cases.
作者 周珺 黄尉 ZHOU Jun;HUANG Wei(School of Mathematics,Hefei University of Technology, Hefei 230009,P.R.China)
出处 《应用数学和力学》 CSCD 北大核心 2019年第2期167-180,共14页 Applied Mathematics and Mechanics
基金 国家自然科学基金重大研究计划(91538112) 国家自然科学基金青年科学基金(11201450)~~
关键词 压缩感知 块-限制等距性质 块稀疏信号 混合l2/lq最小化 compressed sensing block-RIP block-sparse signal mixed l2/lq norm minimization
  • 相关文献

参考文献1

二级参考文献13

  • 1Baraniuk, R., Cevher, V., Durate, M., et al.: Model based compressive sensing. IEEE Trans. Inform. Theory, 56, 1982-2001 (2010). 被引量:1
  • 2Cai, T., Wang, L., Xu, G.: New bounds for restricted isometry constants. IEEE Trans. Inform. Theory, 56, 4388-4394 (2010). 被引量:1
  • 3Cai, T., Wang, L., Zhang, J.: Shifting inequality and recovery of sparse signals. IEEE Trans. Inform. Theory, 58, 1300-1308 (2010). 被引量:1
  • 4Candhs, E. J.: The restricted isometry property and its implications for compressed sensing. C.R. Math. Acad. Sci. Paris, Serie I, 346, 589-592 (2008). 被引量:1
  • 5Cands, E. J., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory, 52,489-509 (2006). 被引量:1
  • 6Cands, E. J., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure Appl. Math., 59, 1207-1223 (2006). 被引量:1
  • 7Cands, E. J., Tao, T.: Decoding by linear programming. IEEE Trans. Inform. Theory, 51, 4203-4215 (2005). 被引量:1
  • 8Davies, M. E., Gribonval, R.: Restricted isometry properties where lp sparse recovery can fail for 0 < p _< 1. IEEE Trans. Inform. Theory, 55, 2203-2214 (2010). 被引量:1
  • 9Donoho, D.: Compressed sensing. IEEE Trans. Inform. Theory, 52, 1289-1306 (2006). 被引量:1
  • 10Eldar, Y. C., Kuppinger, P., Bolcskei, H.: Block-sparse signals: uncertainty relations and efficient recovery. IEEE Trans. Signal Process., 58, 3042-3054 (2010). 被引量:1

共引文献9

同被引文献21

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部