期刊文献+

Investigation of Vapor-liquid Ejector with Organic Working Fluids 被引量:2

Investigation of Vapor-liquid Ejector with Organic Working Fluids
原文传递
导出
摘要 The vapor-liquid ejector is a simply flow device and driven by thermal energy. In this paper, a modified mathematical model of the vapor-liquid ejector is proposed, and the validation shows good agreements with the experimental data. A study is carried out with six organic working fluids, namely R1233 zd(E), R1336 mzz(Z), R236 ea, R245 ca, R245 fa and R365 mfc. The influences of the entrainment ratio, the area ratio, the superheating at the vapor nozzle inlet, the subcooling at the liquid nozzle inlet, and the pressures at these inlets on the pressure lifting are parametrically investigated. An increase in the subcooling leads to the great increasing of pressure lifting and the superheating has slight effect on the pressure lifting, whereas others have the opposite tendency. The studies of the pressures and temperatures at the typical locations inside the vapor-liquid ejector are further conducted by using R1336 mzz(Z). The results show that the above parameters have great influence on these pressures and temperatures inside except that the pressures are insignificantly impacted by the superheating, and the temperatures are negligibly affected by the area ratio. R1336 mzz(Z) is recommended as a good working fluid for the vapor-liquid ejector. The vapor-liquid ejector is a simply flow device and driven by thermal energy. In this paper, a modified mathematical model of the vapor-liquid ejector is proposed, and the validation shows good agreements with the experimental data. A study is carried out with six organic working fluids, namely R1233 zd(E), R1336 mzz(Z), R236 ea, R245 ca, R245 fa and R365 mfc. The influences of the entrainment ratio, the area ratio, the superheating at the vapor nozzle inlet, the subcooling at the liquid nozzle inlet, and the pressures at these inlets on the pressure lifting are parametrically investigated. An increase in the subcooling leads to the great increasing of pressure lifting and the superheating has slight effect on the pressure lifting, whereas others have the opposite tendency. The studies of the pressures and temperatures at the typical locations inside the vapor-liquid ejector are further conducted by using R1336 mzz(Z). The results show that the above parameters have great influence on these pressures and temperatures inside except that the pressures are insignificantly impacted by the superheating, and the temperatures are negligibly affected by the area ratio. R1336 mzz(Z) is recommended as a good working fluid for the vapor-liquid ejector.
出处 《Journal of Thermal Science》 SCIE EI CAS CSCD 2019年第1期61-71,共11页 热科学学报(英文版)
基金 supported by the National Natural Science Foundation of China(51706047) Guangdong Special Funding for Applied Technology R&D(2016B020243010) Foshan Science&Technology Innovation Project(2016AG101232)
关键词 VAPOR-LIQUID EJECTOR modelling ORGANIC FLUIDS PRESSURE LIFTING vapor-liquid ejector modelling organic fluids pressure lifting
  • 相关文献

参考文献1

二级参考文献1

共引文献12

同被引文献13

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部