期刊文献+

基于随机森林分类优化的多特征语音情感识别 被引量:12

Multi-Feature Speech Emotion Recognition Based on Random Forest Classification Optimization
下载PDF
导出
摘要 语音情感识别是人机交互的研究热点之一.针对传统随机森林模型(RF)中决策树不分优劣具有同样决策权的不合理性,提出一种差分进化加权优化的随机森林分类模型(DERF).RF中样本的选择及每个节点变量的产生都是随机的,因此每次分类结果会有微小波动.为提高系统分类稳定性及识别准确率,集成构建三个相同的DERF分类器,按照多数投票原则确定最终决策结果.实验中融合语音的时域特征、频域特征、听觉语谱图特征及非线性hurst参数特征,分别选取柏林数据库和CASIA中文库中的五种情感进行识别,结果表明,本文所提方法有效提高了系统识别性能. Speech emotion recognition is one of the research hotspots of human-computer interaction.In view of the irrationality of the decision tree in the traditional random forest model(RF),which has the same decision-making power,a differential evolution weighted random forest classification model(DERF)is proposed.In RF,the sample and each node variable are generated randomly,so there will be slight fluctuations in each classification result.In order to improve the system classification stability and recognition accuracy,three identical DERF classifiers are integrated and constructed,and the final decision results are determined according to the majority voting principle.In the experiment,the time domain feature,auditory language spectrum feature and nonlinear hurst parameter feature of speech were combined.The five emotions in the Berlin database and the CASIA database were selected to identify the results.The results show that the proposed method improves the system recognition effectively.
作者 李高玲 帖云 齐林 LI Gao-ling;TIE Yun;QI Lin(School of Industrial Technology Research Institute,Zhengzhou University,Zhengzhou 450001,China)
出处 《微电子学与计算机》 北大核心 2019年第1期70-73,共4页 Microelectronics & Computer
关键词 语音情感识别 随机森林 差分进化 多数投票 speech emotion recognition random forest differential evolution majority voting
  • 相关文献

参考文献5

二级参考文献99

  • 1WANG Zhiping ZHAO Li ZOU Cairong.Speech emotion recognition based on statistical pitch model[J].Chinese Journal of Acoustics,2006,25(1):87-96. 被引量:3
  • 2姜晓庆,田岚,崔国辉.多语种情感语音的韵律特征分析和情感识别研究[J].声学学报,2006,31(3):217-221. 被引量:8
  • 3van Bezooijen R,Otto SA,Heenan TA. Recognition of vocal expressions of emotion:A three-nation study to identify universal characteristics[J].{H}JOURNAL OF CROSS-CULTURAL PSYCHOLOGY,1983,(04):387-406. 被引量:1
  • 4Tolkmitt FJ,Scherer KR. Effect of experimentally induced stress on vocal parameters[J].Journal of Experimental Psychology Human Perception Performance,1986,(03):302-313. 被引量:1
  • 5Cahn JE. The generation of affect in synthesized speech[J].Journal of the American Voice Input/Output Society,1990.1-19. 被引量:1
  • 6Moriyama T,Ozawa S. Emotion recognition and synthesis system on speech[A].Florence:IEEE Computer Society,1999.840-844. 被引量:1
  • 7Cowie R,Douglas-Cowie E,Savvidou S,McMahon E,Sawey M,Schro. Feeltrace:An instrument for recording perceived emotion in real time[A].Belfast:ISCA,2000.19-24. 被引量:1
  • 8Grimm M,Kroschel K. Evaluation of natural emotions using self assessment manikins[A].Cancun,2005.381-385. 被引量:1
  • 9Grimm M,Kroschel K,Narayanan S. Support vector regression for automatic recognition of spontaneous emotions in speech[A].IEEE Computer Society,2007.1085-1088. 被引量:1
  • 10Eyben F,Wollmer M,Graves A,Schuller B Douglas-Cowie E Cowie R. On-Line emotion recognition in a 3-D activation-valencetime continuum using acoustic and linguistic cues[J].Journal on Multimodal User Interfaces,2010,(1-2):7-19. 被引量:1

共引文献183

同被引文献122

引证文献12

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部