期刊文献+

眼底视网膜血管多级分割的随机共振方法 被引量:1

Stochastic Resonance Method for Multilevel Segmentation of Retinal Vessels
下载PDF
导出
摘要 目的改善眼底视网膜低对比度血管的检测性能,提高眼部疾病临床辅助诊断的效率和准确率。方法提出了一种基于随机共振机制的眼底视网膜血管多级分割方法。首先用图像信号和附加噪声,获取全局意义下的FHN神经元非线性模型的最佳随机共振响应,对高等级强度信号进行检测;然后将输入信号定义为去除高对比度血管的局部图像,优化参数后,再对低等级强度信号进行检测。最后融合多级随机共振响应,得到眼底视网膜血管的分割结果。结果以DRIVE图像库为例,分别与两位专家手动分割结果进行灵敏度Sn的定量比较,本文方法得到的结果平均值较高,差值分别为0.2007、0.1817。结论本文方法充分利用了噪声对于弱信号检测与分割作用,对低强度等级血管的分割上面优势明显。 Objective To improve the detection performance of low contrast retinal vessels which is helpful to increase the efficiency and accuracy of clinical auxiliary diagnosis of ocular diseases. Methods A multilevel segmentation method for retinal vessels based on stochastic resonance was presented in this paper. Firstly,the optimal stochastic resonance response of FHN neuron nonlinear model in the global sense was obtained by image signal and additional noise,and the high-level signal was detected. Then the input signal was defined as the local image of high contrast blood vessel. After optimizing the parameters,the low intensity signal was detected. Finally,the multilevel stochastic resonance response was integrated to obtain the result of retinal blood vessel segmentation. Results Taking DRIVE image library as an example,the sensitivity Sn of the method was quantitatively compared with the manual segmentation results of two experts. The average value of the results obtained by this method was higher,and the difference was 0. 2007 and 0. 1817,respectively. Conclusion The new method makes full use of the effect of noise on the detection and segmentation of weak signals,and has obvious advantages on the segmentation of low intensity vessels.
作者 杜宇华 范影乐 武薇 Du Yuhua;Fan Yingle;Wu Wei(Laboratory of Pattern Recognition and Image Processing,Hangzhou DianZi University,Hangzhou Zhejiang 310018,China)
出处 《航天医学与医学工程》 CAS CSCD 北大核心 2018年第6期650-658,共9页 Space Medicine & Medical Engineering
基金 国家自然科学基金(61501154)
关键词 眼底视网膜 血管分割 随机共振 FHN神经元 fundus retina vessel segmentation stochastic resonance FHN neurons
  • 相关文献

参考文献4

二级参考文献95

  • 1李国友,李惠光,吴惕华.改进的PCNN与Otsu的图像增强方法研究[J].系统仿真学报,2005,17(6):1370-1372. 被引量:9
  • 2汤敏,王惠南.彩色视网膜血管图像的自动分割算法[J].仪器仪表学报,2007,28(7):1281-1285. 被引量:6
  • 3Pun KSC, Nguyen TQ. Widely linear filter bank equalizer for real STBC [ J]. Signal Processing, 2008, 56 (9) : 4544- 4548. 被引量:1
  • 4Nasri M, Nezamabadi-pour H. Image denoising in the wavelet domain using a new adaptive thresholding function [J]. Neu- roeomputing, 2009, 72(4-6): 1012-1025. 被引量:1
  • 5Villa J, Rodriguez-Vera R, Quiroga JA, et al. Anisotropic phase-map denoising using a regularized cost-function with complex-valued Markov-random-fields [ J]. Optics and Lasers in Engineering, 2010, 48(6) : 650-656. 被引量:1
  • 6Aihara T, Kitajo K,Nozaki 13, et al. Internal noise deter- mines external stochastic resonance in visual perception [ J ]. Vision Research, 2008, 48 (14) : 1569-1573. 被引量:1
  • 7Sasaki H, Sakane S, Ishida T, et al. Suprathreshold stochas- tic resonance in visual signal detection [ J ]. Behavioural Brain Research, 2008, 193( 1 ) : 231-236. 被引量:1
  • 8Nozaki D,Yamamoto Y. Enhancement of stochastic resonance in a FitzHugh-Nagumo neuronal model driven by colored noise [J]. Physics Letters A, 1998, 243(5-6) : 281-287. 被引量:1
  • 9Heneghan C,Chow CC, Collins JJ, et al. Information meas- ures quantifying aperiodic stochastic resonance [J]. Physical Review E, 1996, 54(3) : 2228-2231. 被引量:1
  • 10Juang LH,Wu MN. Image noise reduction using Wiener filte- ring with pseudo-inverse [ J ]. Measurement, 2010,43 (10) : 1649-1655. 被引量:1

共引文献58

同被引文献8

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部