期刊文献+

基于RFID传感标签及QPSO-RVM的变压器绕组故障在线诊断技术 被引量:21

On-line Fault Diagnosis for Transformer Windings Based on RFID Sensor Tags and QPSO-RVM
下载PDF
导出
摘要 该文提出了一种基于无源射频识别(radio frequency identification,RFID)振动传感标签及量子粒子群算法(quantum-behaved particle swarm optimization,QPSO)--相关向量机(relevance vector machine,RVM)的变压器绕组故障在线诊断技术。首先设计一种双天线无源RFID振动传感器标签结构,可以稳定工作在无源模式下。针对变压器绕组振动信号包含大量噪声的特点,利用奇异熵对原始信号进行降噪处理,并提出基于QPSO优化的RVM的故障诊断算法。测试结果表明:该文所设计的标签能够可靠地完成变压器绕组振动信号采集以及传输,QPSO-RVM算法能够快速而准确地定位出故障所在,与国内外现有监测技术相比,具有低成本、功耗低,故障定位迅速准确的优点。 An on-line fault diagnosis for transformer windings based on RFID sensor tags and quantum-behaved particle swarm optimization (QPSO)-relevance vector machine (RVM)was proposed in this paper.Firstly,a double antenna radio frequency identification (RFID)sensor tag was designed to detect vibration signals,which could work on passive mode. Considering the large amount of noise components in winding vibration signals,the singular entropy was employed to de-noise the raw signal.The RVM optimized by QPSO was used for fault diagnosis.Experimental results show that the exploited RFID sensor tag can reliably accumulate and transfer the winding vibration signal,and the proposed fault diagnosis approach has merit of accuracy and rapidity.Compared with existing fault diagnosis approaches,the proposed approach has advantages of low cost,low power consumption and can locate the faulty winding quickly and accurately.
作者 邓芳明 温开云 何怡刚 李兵 汪涛 吴翔 DENG Fangming;WEN Kaiyun;HE Yigang;LI Bing;WANG Tao;WU Xiang(School of Electrical and Automation Engineering,East China Jiaotong University,Nanchang 330013,Jiangxi Province,China;School of Electrical Engineering,Wuhan University,Wuhan 430072,Hubei Province,China;School of Electrical Engineering andAutomation,Hefei University of Technology,Hefei 230009,Anhui Province,China)
出处 《中国电机工程学报》 EI CSCD 北大核心 2018年第24期7183-7193,共11页 Proceedings of the CSEE
关键词 变压器绕组 射频识别 故障诊断 奇异熵 相关向量机 量子粒子群算法 transformer winding radio frequency identification (RFID) fault diagnosis singular entropy relevance vector machine (RVM) quantum-behaved particle swarm optimization (QPSO)
  • 相关文献

参考文献7

二级参考文献110

共引文献133

同被引文献295

引证文献21

二级引证文献159

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部