期刊文献+

Multiple Deep-Belief-Network-Based Spectral-Spatial Classification of Hyperspectral Images 被引量:5

Multiple Deep-Belief-Network-Based Spectral-Spatial Classification of Hyperspectral Images
原文传递
导出
摘要 A deep-learning-based feature extraction has recently been proposed for HyperSpectral Images(HSI)classification. A Deep Belief Network(DBN), as part of deep learning, has been used in HSI classification for deep and abstract feature extraction. However, DBN has to simultaneously deal with hundreds of features from the HSI hyper-cube, which results into complexity and leads to limited feature abstraction and performance in the presence of limited training data. Moreover, a dimensional-reduction-based solution to this issue results in the loss of valuable spectral information, thereby affecting classification performance. To address the issue, this paper presents a Spectral-Adaptive Segmented DBN(SAS-DBN) for spectral-spatial HSI classification that exploits the deep abstract features by segmenting the original spectral bands into small sets/groups of related spectral bands and processing each group separately by using local DBNs. Furthermore, spatial features are also incorporated by first applying hyper-segmentation on the HSI. These results improved data abstraction with reduced complexity and enhanced the performance of HSI classification. Local application of DBN-based feature extraction to each group of bands reduces the computational complexity and results in better feature extraction improving classification accuracy. In general, exploiting spectral features effectively through a segmented-DBN process and spatial features through hyper-segmentation and integration of spectral and spatial features for HSI classification has a major effect on the performance of HSI classification. Experimental evaluation of the proposed technique on well-known HSI standard data sets with different contexts and resolutions establishes the efficacy of the proposed techniques,wherein the results are comparable to several recently proposed HSI classification techniques. A deep-learning-based feature extraction has recently been proposed for HyperSpectral Images(HSI)classification. A Deep Belief Network(DBN), as part of deep learning, has been used in HSI classification for deep and abstract feature extraction. However, DBN has to simultaneously deal with hundreds of features from the HSI hyper-cube, which results into complexity and leads to limited feature abstraction and performance in the presence of limited training data. Moreover, a dimensional-reduction-based solution to this issue results in the loss of valuable spectral information, thereby affecting classification performance. To address the issue, this paper presents a Spectral-Adaptive Segmented DBN(SAS-DBN) for spectral-spatial HSI classification that exploits the deep abstract features by segmenting the original spectral bands into small sets/groups of related spectral bands and processing each group separately by using local DBNs. Furthermore, spatial features are also incorporated by first applying hyper-segmentation on the HSI. These results improved data abstraction with reduced complexity and enhanced the performance of HSI classification. Local application of DBN-based feature extraction to each group of bands reduces the computational complexity and results in better feature extraction improving classification accuracy. In general, exploiting spectral features effectively through a segmented-DBN process and spatial features through hyper-segmentation and integration of spectral and spatial features for HSI classification has a major effect on the performance of HSI classification. Experimental evaluation of the proposed technique on well-known HSI standard data sets with different contexts and resolutions establishes the efficacy of the proposed techniques,wherein the results are comparable to several recently proposed HSI classification techniques.
出处 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2019年第2期183-194,共12页 清华大学学报(自然科学版(英文版)
基金 supported in part by the National Natural Science Foundation of China(No.61672017) the National High-Tech Research and Development Program of China(No.2012AA011602)
关键词 HYPERSPECTRAL image CLASSIFICATION segmentation deep BELIEF network support VECTOR machine hyperspectral image classification segmentation deep belief network support vector machine
  • 相关文献

参考文献1

二级参考文献34

  • 1Gartner, Gartner says Android has surpassed a billion shipments of devices, http://www.gartner.com/ newsroongid/2954317, 2015. 被引量:1
  • 2T. Vidas, D. Votipka, and N. Christin, All your droid are belong to us: A survey of current Android attacks, inProceedings of the 5th USENIX Workshop on Offensive Technologies (WOOT), 2011, pp. 81-90. 被引量:1
  • 3A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, A survey of mobile malware in the wild, in Proceedings of the 1st ACM Workshop on Security and Privacy in Smartphones and Mobile Devices (SPSM), 2011, pp. 3-14. 被引量:1
  • 4McAfee, McAfee labs threats report, http://www. mcafee.con-dus/resources/reports/rp-quarterly-threat-q4- 2013.pdf, 2015. 被引量:1
  • 5A. Mylonas, A. Kastania, and D. Gritzalis, Delegate the smartphone user? Security awareness in smartphone platforms, Computers & Security, vol. 34, pp. 47-66, 2013. 被引量:1
  • 6Z. Fang, W. Han, and Y. Li, Permission based Android security: Issues and countermeasures, Computers & Security, vol. 43, pp. 205-218, 2014. 被引量:1
  • 7J. Xu, Y.-T. Yu, Z. Chert, B. Cao, W. Dong, Y. Guo, and J. Cao, Mobsafe: Cloud computing based forensic analysis for massive mobile applications using data mining, Tsinghua Science and Technology, vol. 18, no. 4, pp. 418--427, 2013. 被引量:1
  • 8R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, Whyper: Towards automating risk assessment of mobile applications, in Proceedings of the 22nd USENIX Security Symposium (USENIX Security), 2013, pp. 527-542. 被引量:1
  • 9Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen, Autocog: Measuring the description-to-permission fidelity in Android applications, in Proceedings of the 21st ACM Conference on Computer and Communications Security (CCS), 2014, pp. 1354-1365. 被引量:1
  • 10D. Geneiatakis, I. N. Fovino, I. Kounelis, and P. Stirparo, A permission verification approach for Android mobile applications, Computers & Security, vol. 49, pp. 192-205, 2015. 被引量:1

共引文献36

同被引文献29

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部