摘要
The increase in energy demand caused by industrialization leads to abundant CO_2 emissions into atmosphere and induces abrupt rise in earth temperature. It is vital to acquire relatively simple and cost-effective technologies to separate CO_2 from the flue gas and reduce its environmental impact. Solid adsorption is now considered an economic and least interfering way to capture CO_2, in that it can accomplish the goal of small energy penalty and few modifications to power plants. In this regard, we attempt to review the CO_2 adsorption performances of several types of solid adsorbents, including zeolites, clays, activated carbons, alkali metal oxides and carbonates, silica materials, metal–organic frameworks, covalent organic frameworks, and polymerized high internal phase emulsions. These solid adsorbents have been assessed in their CO_2 adsorption capacities along with other important parameters including adsorption kinetics, effect of water, recycling stability and regenerability. In particular,the superior properties of adsorbents enhanced by impregnating or grafting amine groups have been discussed for developing applicable candidates for industrial CO_2 capture.
The increase in energy demand caused by industrialization leads to abundant CO_2 emissions into atmosphere and induces abrupt rise in earth temperature. It is vital to acquire relatively simple and cost-effective technologies to separate CO_2 from the flue gas and reduce its environmental impact. Solid adsorption is now considered an economic and least interfering way to capture CO_2, in that it can accomplish the goal of small energy penalty and few modifications to power plants. In this regard, we attempt to review the CO_2 adsorption performances of several types of solid adsorbents, including zeolites, clays, activated carbons, alkali metal oxides and carbonates, silica materials, metal–organic frameworks, covalent organic frameworks, and polymerized high internal phase emulsions. These solid adsorbents have been assessed in their CO_2 adsorption capacities along with other important parameters including adsorption kinetics, effect of water, recycling stability and regenerability. In particular,the superior properties of adsorbents enhanced by impregnating or grafting amine groups have been discussed for developing applicable candidates for industrial CO_2 capture.
基金
Supported by the National Key Research & Development Program of China(2017YFB0603302)