期刊文献+

微生物直接种间电子传递:机制及应用 被引量:20

Direct Interspecies Electron Transfer of Microbes: Mechanism and Application
下载PDF
导出
摘要 微生物种间电子传递(Interspecies electron transfer,IET)是指电子供体微生物与电子受体微生物之间通过直接或间接方式传递电子形成互营生长关系,从而共同完成单一微生物不能完成的代谢过程的现象。IET分为间接种间电子传递(MediatedIET,MIET)和直接种间电子传递(Direct IET,DIET)。其中,前者一般需要氢、甲酸、核黄素等作为电子载体,而后者是指微生物间通过纳米导线、氧化还原蛋白、导电颗粒等进行直接电子交换。DIET是最新发现的IET方式,DIET的发现改变了微生物互营代谢必须依赖氢/甲酸等能量载体的传统认识。本文在论述MIET的同时,重点阐述了DIET的三种介导机制,列举了参与IET的典型微生物种类,系统介绍了IET在厌氧消化产甲烷、甲烷厌氧氧化、微生物脱氯等重要环境过程中的作用机制及应用潜力,并展望了微生物种间电子传递的未来研究方向。本综述有助于加深对微生物IET发生机制的认识,为理解微生物IET在自然界碳氮等元素循环、温室气体排放、污染物降解等关键生物地球化学过程中的作用提供理论基础,为IET的实际工程应用提供可能。 Microbial interspecies electron transfer(IET) refers to the electron exchange between electron-donating microorganisms and electron-accepting microorganisms that forms a syntrophic growth relationship between the two thus enabling the two to jointly accomplish a certain metabolic process that no single microorganism can do. Moreover, it also plays a significant role in biogeochemical processes, such as degradation of organic matter, production of bioenergy and reduction of greenhouse gas emission. IET could be sorted into direct IET(DIET) and indirect or mediated IET(MIET). DIET occurs when there is a biological electrical connection and a difference in voltage potential, whereas MIET relies on diffusion of redox carriers driven by concentration gradients. Generally MIET needs hydrogen, formate or flavin as electron carrier, while DIET is found done directly through nanowire(e-pili), redox protein or conductive particles. Interspecies hydrogen/formate transfer, one type of MIET, occurs commonly in methanogenic microbial community, such as S organism and Methanobacterium ruminantium, Desulfovibrio vulgaris and Methanosarcina barkeri. In addition, sulfide, L-cysteine and AQDS can act as electron shuttles mediating electron transfer between microorganisms, such as Desulfuromonas acatoxidans and Prosthecochloris aestuarii. However, electron transfer between Geobacter species so far has only been documented to be direct: by way of e-pili and c-type cytochromes. Either of these Geobacter cells short of biological connections, such as e-pili and(or) cytochromes, can not get syntrophically related. Nevertheless, with the mediation of conductive materials, such as activated carbon and biochar, e-pili would become less functional during the process of DIET since syntrophic partners could exchange electronsvia these conductive carbon materials. Moreover, conductive mineral magnetite can substitute for outer-membrane c-type cytochrome in its role. Mutant strain of G. sulfurreducens that is deficient in OmcS cannot co-culture
作者 黄玲艳 刘星 周顺桂 HUANG Lingyan;LIU Xing;ZHOU Shungui(College of Resources and Environment,Fujian Agriculture and Forestry University,Fuzhou 350002,China)
出处 《土壤学报》 CAS CSCD 北大核心 2018年第6期1313-1324,共12页 Acta Pedologica Sinica
基金 国家自然科学基金项目(91751109 41671264 31600089)资助~~
关键词 种间电子传递 直接种间电子传递 纳米导线 氧化还原蛋白 厌氧消化 Interspecies electron transfer Direct interspecieselectron transfer Nanowire Redox proteins Anaerobic digestion
  • 相关文献

参考文献3

二级参考文献223

  • 1Losekann T, Knittel K, Nadalig T, et al. Diversity and abun- dance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Appl Envir Microbiol, 2007, 73(10) : 3 348-3 362. 被引量:1
  • 2Knittel K, Boetius A. Anaerobic oxidation of methane: Progress with an unknown process. Annu Rev Microbiol, 2009, 63: 311 -334. 被引量:1
  • 3Martinez R J, Mills H J, Story S, et al. Prokaryotic diversity and metabolically active microbial populations in sediments from an active mud volcano in the Gulf of Mexico. Environ Microbiol, 2006, 8(10): 1 783-1 796. 被引量:1
  • 4Mills H J, Martinez R J, Story S, et al. Characterization of microbial community structure in Gulf of Mexico gas hydrates : comparative analysis of DNA- and RNA-derived clone libraries. Appl Environ Microbiol, 2005, 71 (6) : 3 225-3 247. 被引量:1
  • 5Lloyd K G, Lapham L, Teske A. An anaerobic methane-oxidizing community of ANME-lb archaea in hypersaline Gulf of Mexico sediments. Appl Environ Microbiol, 2006, 72 ( 11 ) : 7 215-7 230. 被引量:1
  • 6Michaelis W, Seifert R, Nauhaus K,et al. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science, 2002, 297(5583) : 1 013-1 015. 被引量:1
  • 7Knittel K, Boetius A, Lemke A, et al. Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia margin, Oregon). Geomicrobiol J, 2003, 20(4) : 269-294. 被引量:1
  • 8Reitner J, Peckmann J, Blumenberg M, et al. Concretionary methane seep carbonates and associated microbial communities in Black Sea sediments. Palaegeogr Paleoclimatol Paleoecol, 2005, 227(1/3) : 18-30. 被引量:1
  • 9Dekas A E, Poretsky R S, Orphan V J. Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia. Science, 2009, 326(5951 ): 422-426. 被引量:1
  • 10Nunoura T, Oida H, Miyazaki J, et al. Quantification of mcrA by fluorescent PCR in methanogenic and methanotrophic microbial communities. FEMS Microbiol Ecol, 2008, 64(2) : 240-247. 被引量:1

共引文献91

同被引文献131

引证文献20

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部