摘要
The conversion of CO_2 to liquid hydrocarbon fuels using solar energy is gaining attraction as a means to deal with climate change and energy depletion,and assessment for related thermochemical cycles has attracted great interests in recent years.Here,we perform the thermodynamical analysis on solar-aided CO_2 conversion reactions based on Tin oxides.The equilibrium compositions,production purity and CO_2 conversion are obtained.Also,the variations of conversion efficiency with respect to temperature,normal beam solar insolation,mean flux concentration ratio,initial CO_2 to SnO ratio and heat recuperation percentage are revealed.Our results indicate the initial CO_2 to SnO ratio,χ_(ini),has an evident impact on conversion efficiency andχ_(ini)=0.5,T=700 K andχ_(ini)=1,T=950 K,are favourable for solid C and gaseous CO production,respectively.The calculated maximum cycle efficiency with direct work production is 0.340 at T=950 K andχ_(ini)=1,demonstrating the high conversion efficiency of the proposed system.
The conversion of CO_2 to liquid hydrocarbon fuels using solar energy is gaining attraction as a means to deal with climate change and energy depletion,and assessment for related thermochemical cycles has attracted great interests in recent years.Here,we perform the thermodynamical analysis on solar-aided CO_2 conversion reactions based on Tin oxides.The equilibrium compositions,production purity and CO_2 conversion are obtained.Also,the variations of conversion efficiency with respect to temperature,normal beam solar insolation,mean flux concentration ratio,initial CO_2 to SnO ratio and heat recuperation percentage are revealed.Our results indicate the initial CO_2 to SnO ratio,χ_(ini),has an evident impact on conversion efficiency andχ_(ini)=0.5,T=700 K andχ_(ini)=1,T=950 K,are favourable for solid C and gaseous CO production,respectively.The calculated maximum cycle efficiency with direct work production is 0.340 at T=950 K andχ_(ini)=1,demonstrating the high conversion efficiency of the proposed system.
基金
supported by the National Natural Science Foundation of China (Grant No. 51476163)
the Institute of Electrical Engineering, Chinese Academy of Sciences (Grant No. Y770111CSC)