期刊文献+

基于SPSA优化的Kalman滤波无标定视觉伺服 被引量:4

Uncalibrated Visual Servoing Based on Kalman Filter Optimized by SPSA
下载PDF
导出
摘要 针对于机器人的无标定视觉伺服问题,本文提出一种基于同步扰动随机逼近算法优化Kalman滤波在线估计图像雅克比矩阵的方法。该方法将机器人图像雅克比矩阵作为系统状态,使用Kalman滤波器对系统状态进行观测。为提高滤波器性能,采用同步扰动随机逼近算法对滤波器参数进行优化。应用此方法估计出图像雅克比矩阵并设计控制率,避免了复杂的系统标定过程。仿真结果表明,所提出的方法能够实现无标定环境下六自由度机器人的视觉定位,且精度和稳定性较高。 Considering the problem of robot uncalibrated visual servoing,this paper presents a method for online estimation of image Jacobian matrix based on Kalman filter optimized by simultaneous perturbation stochastic approximation algorithm.This method takes the robot image Jacobian matrix as the system state,and uses Kalman filter to observe the system state.In order to improve the performance of the filter,the simultaneous perturbation stochastic approximation algorithm is used to optimize the filter parameters.This method is used to estimate the image Jacobian matrix and to design the control strategy,which can avoid complicated system calibration process.The simulation results indicate that the proposed method can achieve the visual positioning of the 6-degree of freedom robot with high accuracy and stability under the uncalibrated situation.
作者 章进强 张宪霞 Zhang Jinqiang;Zhang Xianxia(Shanghai Key Laboratory of Power Station Automation Technology,School of Mechatronics and Automation,Shanghai University,Shanghai 200072,China)
出处 《系统仿真学报》 CAS CSCD 北大核心 2018年第12期4754-4759,共6页 Journal of System Simulation
基金 国家自然科学基金(61273182)
关键词 机器人 SPSA KALMAN滤波 无标定视觉伺服 图像雅克比 robot SPSA Kalman filter uncalibrated visual servoing image Jacobian
  • 相关文献

参考文献3

二级参考文献26

  • 1赵杰,李牧,李戈,闫继宏.一种无标定视觉伺服控制技术的研究[J].控制与决策,2006,21(9):1015-1019. 被引量:8
  • 2吕遐东,黄心汉,王敏.基于模糊自适应Kalman滤波的机械手动态图像雅可比矩阵辨识[J].高技术通讯,2007,17(3):262-267. 被引量:2
  • 3辛菁,刘丁,班建安.自适应卡尔曼滤波器在机器人控制中的应用[J].西安理工大学学报,2007,23(2):136-139. 被引量:8
  • 4QIAN JIANG, SU JIANBO. Online estimation of image Jacobian matrix by Kalman-Bucy filter for uncalibrated stereo vision feedback [ C]// Proceedings of IEEE International Conference on Robotics and Automation. New York: 1EEE, 2002:562 -567. 被引量:1
  • 5LV XIADONG, HUANG XINHUA. Fuzzy adaptive Kalman filtering based estimation of image Jacobian for uncalibrated visual servoing [ C] // Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. New York: IEEE, 2006:2167 -2172. 被引量:1
  • 6ZHAO QINGJIE, WANG FASHENG, SUN ZENGQI. Using neural network technique in vision-based robot curve tracking[ C]// Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. New York: IEEE, 2006:3817 -3822. 被引量:1
  • 7ZHAO QINGJIE, SUN ZENGQI, DENG HONGBIN. Robot visual servoing based on total Jacobian[ C]// Higher-Level Decision Making, LNCS 3321. Berlin: Springer-Verlag, 2004:271-285. 被引量:1
  • 8JULIER S J, UHLMANN J K. A new extension of the Kalman filter to nonlinear system [ EB/OL]. [ 2010 - 08 - 20] http://wenku. baidu, com/view/535c9baedd3383c4bb4cd23a, html. 被引量:1
  • 9JULIER S J. UHLMANN J K. Unscented filtering and nonlinear estimation[ J]. Proceedings of the IEEE, 2004, 92(3) : 401 -422. 被引量:1
  • 10方勇纯.机器人视觉伺服研究综述[J].智能系统学报,2008,3(2):109-114. 被引量:38

共引文献48

同被引文献28

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部