期刊文献+

基于遗传算法的模糊逻辑系统的设计 被引量:3

Design of Fuzzy Logic System Based on Genetic Algorithm
原文传递
导出
摘要 在模糊逻辑系统及控制的设计中,为了避免生成过多的模糊规则影响系统的效果,有必要进行模糊规则的筛选。本文将遗传算法与模糊逻辑系统相结合,使用遗传算法进行规则筛选,并调整模糊神经网络系统的参数,以此来提高模糊逻辑系统的精确性。将选择出来适应度最高的规则作为规则基,设计模糊逻辑系统。为了检验系统的可行性,将设计的模糊逻辑系统应用于丹麦克朗/人民币汇率的预测中,并将遗传算法与最小二乘法进行比较,仿真结果表明,所提出的方法是有效的,取得了更好的效果。 To avoid generate too many fuzzy rules in fuzzy logical system,it necessary to select fuzzy rules.Through the study of genetic algorithms(GA)and fuzzy logic system knowledge and uses this algorithm to select rules of the fuzzy logical system to improve the accuracy of fuzzy logical system (FLS).The selected optimum performance as a rule of the rule base,and together with the parameters into the neural network and fuzzy logic system corresponding design.In order to test the performance of the system,the design of the fuzzy logic system used to predict the DKK/CNY exchange rate in comparison,by comparing GA algorithm and the least square method,the simulation results show the effectiveness of the proposed design method and can be realized better performance.
作者 王怡杰 王涛 兰洁 WANG Yi-jie;WANG Tao;LAN Jie(College of Science,Liaoning University of Technology,Jinzhou121001,China)
出处 《模糊系统与数学》 北大核心 2018年第5期78-86,共9页 Fuzzy Systems and Mathematics
基金 辽宁省高校基本科研业务资助项目(JL201615410) 辽宁省自然科学基金指导项目(20180550056)
关键词 遗传算法 模糊逻辑系统 神经网络 最小二乘法 丹麦克朗/人民币汇率 Genetic Algorithm Fuzzy Logic System Neural Network The Least Square Method DKK/CNY Exchange Rate
  • 相关文献

参考文献6

二级参考文献19

  • 1王日宏.用GA寻优线性系统模糊控制器规则[J].计算机仿真,2004,21(6):113-114. 被引量:5
  • 2张鹏,张丽芬.人民币汇率升值对中国经济影响效果评价[J].时代经贸(下旬),2006(12Z):16-16. 被引量:17
  • 3龙升照 汪培庄.控制规则的自调整问题[J].模糊数学,1982,(3). 被引量:7
  • 4M Mitehell. An introduction to genetic algorithms [ M ]. MIT Press, Cambridge, 1996. 被引量:1
  • 5D E Goldberg. Genetic algorithms in search, optimization and ma- chine learning[ M]. Addison-Wesley publishing, 1989. 被引量:1
  • 6S Hwang, R S He. Improving real-parameter genetic algorithm with simulated annealing for engineering problem[J]. Advances in Engineering Software, 2006,37 : 406 -418. 被引量:1
  • 7J Zhang, H S H Chung, W L Lo. Clustering-Based Adaptive Crossover and Mutation Probabilities for Genetic Algorithms [ J ]. IEEE Transactions on Evolutionary Computation, 2006,11 ( 3 ) : 326 -335. 被引量:1
  • 8R Hinterding, Z Michalewicz, A Eiben. Adaptation in evolutionary computation: a survey [ C ]. Proceedings of IEEE International Conference on Evolutionary Computation, Piscataway, NJ. , 1997. 65 -69. 被引量:1
  • 9D E Goldberg.Genetic algorithms in search,optimization and machine learning[M].Addison-Wesley Publishing Company Inc,1989. 被引量:1
  • 10D A Linkens,H O Nyongesa.Genetic algorithms for fuzzy control[J].IEE Proc_control Theory,1995,142 (3) :161-176. 被引量:1

共引文献41

同被引文献34

引证文献3

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部