期刊文献+

基于高阶累积量的水声噪声检测与识别 被引量:9

DETECTION AND RECOGNITION OF SHIP NOISE BASED ON HIGHER-ORDER CUMULANT
下载PDF
导出
摘要 本文基于高阶统计量理论研究了海洋环境噪声和船舶辐射噪声的高斯性 ,同时基于高阶累积量T2 研究了非高斯背景下非高斯信号的一种检测方法 ,并用于海洋环境噪声下检测船舶辐射噪声的方法研究中。另外研究了三类船舶辐射噪声双谱中对角切片和非对角切片特征 ,并将其作为表征船舶辐射噪声的特征向量 ,经过一定的实船实验得到了较为满意的结果。 The gaussianity of water acoustic signal was studied by higher order statistics. Some rules were found. They show that ship noise can be regarded as non Gaussian signals. Calm sea noise late at night is Gaussian and sea noise in the daytime must be deemed to be non Gaussian. Based on these characters, the method of detecting the non Gaussian signal in a non Gaussian background is put forward by using the higher order cumulant T 2 , and ulteriorly making use of this method to solve the problem detecting the ship noise from the sea noise. In addition, based on the higher order cumulant of the ship noise, the characters of diagonal slices and non diagonal slices are abortively studied and on second thoughts they are regarded as character eigenvectors for classifying three types of the ship noise. By using the IMMNN classifier, fine results have been obtained.
出处 《兵工学报》 EI CAS CSCD 北大核心 2002年第1期72-78,共7页 Acta Armamentarii
关键词 双谱检测 非高斯信号检测 模式识别 高阶累积量 水声探测 声纳 船舶噪声 海洋环境噪声 bispectrum detection, non Gaussian signal detection, pattern recognition
  • 相关文献

参考文献5

  • 1Kletter D,Messer H.Suboptimal detection of non-Gaussian signal by third-order spectral analysis.IEEE Trans on Acoustic Speech and Processing,1990,38(6):901~909 被引量:1
  • 2Hinich M J.Testing for gaussianity and linearity of a stationary time series.J Time Series Analysis,1982,3(2):169~176 被引量:1
  • 3Hinich M J,Wilson G R.Detect of non-Gaussian signal in non-Gaussian noise the bispectrum.IEEE Trans on Acoustic Speech and Signal Processing,1990,38(7):1126~1131 被引量:1
  • 4Sundaramorthy G,Raghuveer M R,Dianat S A.Bispectral reconstruction of signals in noise:amplitude reconstruction issues.IEEE Trans on Acoustic Speech Signal Processing,1990,38(7):1297~1300 被引量:1
  • 5周越,相敬林,杨杰.Min-Max模糊神经网络的应用研究[J].模式识别与人工智能,2000,13(3):299-304. 被引量:3

二级参考文献2

  • 1Simpson P K.Fuzzy min-max neural networks-part 1: classification[].IEEE Transactions on Neural Networks.1992 被引量:1
  • 2Simpson P K.Fuzzy min-max neural networks-part 2: clustering[].IEEE Transactions on Fuzzy Systems.1993 被引量:1

共引文献2

同被引文献73

引证文献9

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部