期刊文献+

从一道竞赛题谈起

下载PDF
导出
摘要 第一届数学奥林匹克国家集训班选拔考试暨第四届“祖冲之”杯初中数学邀请赛都有这样一道试题: 题目:正方形ABCD边长为1,AB、AD上各有一点P、Q.如果△APQ的周长为2,求∠PCQ的度数. 解:将△CDQ顺时针旋转90°使CD与CB重合,则Q点落在AB的延长线上,记此点为E.过C作PQ的垂线,垂足为F.显然Rt△CDQ≌Rt△CBE,于是EB=DQ.由AP+AQ+PQ=2知PQ=2-AQ-AP=(1-AP)+(1-AQ)=BP+DQ=BP+EB=EP.
出处 《数学教学通讯(中教版)》 2002年第3期42-43,共2页
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部