期刊文献+

多孔介质的一种流-固耦合动态边界理论 被引量:2

A DYNAMIC BOUNDARY THEORY FOR POROUS MEDIUM WITH FLUID-SOLID COUPLING
下载PDF
导出
摘要 基于Biot理论,推导了考虑渗流作用的可变形多孔介质流-固耦合问题的基本方程,建立了本问题的渗流模型,给出了所考虑问题的流体动力弥散分布概率及系数表达式,进一步建立了多孔介质中微压液体位移场模型,讨论了流体动力弥散因素对多孔介质边界的影响,建立了描述多孔介质的动态边界方程,并分别对所建立的四种边界模拟了动态结果及算例。 The primary equations for deformable porous media, including the effects of fluid-solid coupling and infiltration, are derived on the basis of Biot theory. The hydrodynamic dispersion distribution probability and coefficient expressions are presented. The displacement field for the liquid in the porous medium is given. The hydrodynamic dispersion effect on the boundary of porous media is discussed. The moving boundary equation for porous media is established and four types of boundary conditions are studied.
出处 《工程力学》 EI CSCD 北大核心 2002年第1期97-102,共6页 Engineering Mechanics
基金 北京市青年科技骨干培养基金项目(19990618) 北方工业大学科研基金联合资助(20000302)
关键词 可变形多孔介质 流体动力弥散 流固耦合 动态边界理论 渗流 deformable porous medium zone of saturation Newtonian fluid hydrodynamic dispersion
  • 相关文献

参考文献17

  • 1J Stefen. Uber einige Probleme der warmeleitung[J]. S-B Wien Akad. Mat. Natur., 1889,(98):173-484. 被引量:1
  • 2L Rubenstein. The stetan problem. American Math. Society[M]. Providence.R.I.1971. 被引量:1
  • 3J R Ockendon, W R Hodgkins. Moving boundary problems in heat flow and diffusion[M]. Clarendon press.Oxford.UK.1975 . 被引量:1
  • 4G S Cole. Transport processes and fluid flow in solidification[M]. American Socity for Metals. Metals Park.Ohio.1969. 被引量:1
  • 5王建省.三维多孔介质的热弹性动力问题研究[J].北方工业大学学报,1998,10(3):53-60. 被引量:3
  • 6D R Lynch, T M O'Neil. Continuously deforming finite elements for the solution of parabolic problems, with and without plase change[J]. Int. J. Numer. Methods. Eng.1981,(17):81-96. 被引量:1
  • 7M O Okuyiga, W H Ray. Modelling and estimation for a moving boundary problem[J]. Int. J. Num. Meth. Eng. 1985,(21):601-616. 被引量:1
  • 8M A Biot. General theory of 3-D consolidation[J]. J.Appl.Phys.1941,12: 155-164. 被引量:1
  • 9徐曾和, 等. 弹性流体在可变形多孔介质中的一维耦合渗流[C]. 现代力学与科技进步, 北京:清华大学出版社,1997, (2): 660-664.Xu Z H et al. On one-dimensional coupling seep in transmutation porous medium for elasticity liquid[C]. Modern Mechanics and Progresses in Science and Technology. Beijing: Tsinghua Univ. Press, 1997,(2): 660-664. 被引量:1
  • 10李竞生,陈崇希译.多孔介质流体动力学[M].中国建筑工业出版社,1983. Li J S, Chen C X. Hydrodynamics for porous media[M]. China Architecture Industry Press , 1983. 被引量:1

二级参考文献15

共引文献7

同被引文献20

  • 1雷树业,郑贯宇.含湿多孔介质传热传质三参数渗流模型研究方法[J].清华大学学报(自然科学版),1997,37(2):86-90. 被引量:5
  • 2Wang J X, Wang X C. Research on harmonic thermo-visco-leastic-plasticity waves in porous medium. In: Microstructures and Mechanical Properties of New Engineering Materials, Edited by: B Xu, M Tokuda and X Wang, International Academic Publishers,1999,9:431~434 被引量:1
  • 3Wang J X, Wang X C.Research On Thermos Quality Transmission Problems For Porous Medium of Permeate Flow With Creep.Modern Mathis and Mechanics ,MMM-Ⅷ,Zhongshan University Press, Guangzhou, P R China ,2000,11:415~421 被引量:1
  • 4王建省等.具有流固热耦合影响的可变形多孔介质动态物质面分界特征,中国力学学会,力学2000学术大会;力学2000,白以龙,杨卫主编,北京:气象出版社,2000,(8):242-243 被引量:1
  • 5Garcia M H, Journel A G, Aziz K. Automatic grid generation for modeling reservoir heterogeneities. SPE Reservoir Engineering, 1992, 278~284 被引量:1
  • 6Wyckoff R D, Botset H G. The flow of gas-liquid mix-tures through unconsolidated sands. Physics, 1936,7:325~330 被引量:1
  • 7L everett M C. Capillary behavior in porous solids. Trans ASME,1941,142 :152~155 被引量:1
  • 8Dubios M.In Application de la Methode des equations integrales a la mecanique.CETIM,Chp.1,1978. 被引量:1
  • 9Chaudouet A.Three-dimensional transient thermoelastic analyses by the BIE method,Int.J.Num.Meth.Eng.,1987(24):25~45. 被引量:1
  • 10Chaudouet A.Thermo—elasticite 3D Par La Methode Des Equations Integrales.CETIM,1 1 B07 1.1984. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部