期刊文献+

边界条件对对流扩散方程数值稳定性的影响 被引量:3

DISCUSSION ON THE CONVECTIVE NUMERICAL STABILITY OF CONVECTION-DIFFUSSION EQUATION-THE EFFECT OF THE BOUNDARY CONDITIONS
下载PDF
导出
摘要 本文利用数值计算方法对采用均分网格的一维线性无源的对流-扩散方程在各种边界条件下的稳定性进行了分析,燕求出了不同边界条件下一维问题的中心差分和QUICK格式的临界网格Peclet数。指出按现有方法得出的临界网格Peclet数是判别差分格式对流数值稳定性的最苛刻的要求。对中心差分和QUICK格式,除两点边值问题以外的其它边界条件下的稳定性范围均不小于或远远大于两点边值问题的稳定性范围。通过计算还得出了格式的数值稳定性主要取决于计算区域下游侧的边界条件类型而与计算区域上游侧的边界条件类型无关的结论。 The stability of one-dimensional discretized convection-diffusion equation was analyzed at different boundary conditions. All the existing analysis methods are based on five assumptions: one-dimensional, linear, source-free, uniform grid and first kind boundary condition. It is found that the critical grid Peclet number based on the existing analysis method is the most severe requirement for convective stability Computations were carried out for CDS and QUICK schemes, and much larger critical grid Peclet number were obtained for non-first king boundary conditions. It is also found that the stability of the discretized scheme is only dependent on the boundary condition at the downstream end of the computational region.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2001年第6期729-731,共3页 Journal of Engineering Thermophysics
基金 教育部高等学校博士学科点专项基金资助项目(No.98069835) 国家自然科学基金资助项目(No.59806011)
关键词 离散格式 对流项 稳定性 Peclet数 边界条件 对流扩散方程 数值计算 discretized scheme convective term stability Peclet Number
  • 相关文献

参考文献7

  • 1Li Z Y,Int J Comput Appl Technol,2000年,13卷,6期,285页 被引量:1
  • 2陶文铨,计算传热学的近代进展,2000年 被引量:1
  • 3陶文铨,哈尔滨工业大学学报,1999年,31卷,15页 被引量:1
  • 4Kong H,Proceedings ASTP 10,1997年,845页 被引量:1
  • 5张政(译),传热与流体流动的数值计算,1989年 被引量:1
  • 6陶文铨,数值传热学,1988年,220页 被引量:1
  • 7Tao W Q,Numer Heat Transfer,1987年,11卷,491页 被引量:1

同被引文献36

  • 1魏高峰,冯伟.热传导问题的非协调数值流形方法[J].力学季刊,2005,26(3):451-454. 被引量:8
  • 2栾茂田,杨新辉,田荣,杨庆.有限覆盖无单元法在多裂纹岩体断裂特性数值分析中的应用[J].岩石力学与工程学报,2005,24(24):4403-4408. 被引量:3
  • 3帕坦卡SV.传热与流体流动的数值计算[M].北京:科学技术出版社,1989.. 被引量:4
  • 4JTG F40- 2004.公路沥青路面施工技术规范[s].,2004.. 被引量:2231
  • 5TERADA K, KURUMATANI M. An integrated procedure for three-dimensional structural analysis with the finite cover method[J], Int J Numer Methods Eng, 2005, 63(15): 2102-2123. 被引量:1
  • 6TERADA K, ISHII T, KYOYA T, et al. Finite cover method for progressive failure with cohesive zone fracture in heterogeneous solids and structures[J]. Comput Mech, 2007, 39(2): 191-210. 被引量:1
  • 7ISAACSON E, KELLER H B. Analysis of numerical methods [M]. New York, USA: Dover Publications, 1994. 被引量:1
  • 8PLETCHER R. Computational fluid mechanics and heat transfer[M]. 2nd ed. London, UK: Taylor Francis, 1997. 被引量:1
  • 9TORSTEN L. An upwind difference scheme on a novel Shishkin-type mesh for a linear convection-diffusion problem [J]. J Comput Appl Math, 1999, 110(1): 93-104. 被引量:1
  • 10WANG X, YANG Z F, HUANG G H. High-order compact difference scheme for convection diffusion problems on nonuniform grids[J]. J Eng Mech, 2005, 131(12): 1221-1228. 被引量:1

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部