期刊文献+

高精度三次参数样条曲线的构造 被引量:20

Constructing of Cubic Parametric Spline Curve with High Precision
下载PDF
导出
摘要 构造参数样条曲线的关键是选取节点 .该文讨论了 GC2三次参数样条曲线需满足的连续性方程 ,提出了构造 GC2三次参数样条曲线的新方法 .在讨论了平面有序五点确定一组三次多项式函数曲线、平面有序六点唯一确定一条三次多项式函数曲线的基础上 ,提出了计算相邻两区间上的节点的算法 .构造的插值曲线具有三次多项式函数精度 . The parametric spline curve can be constructed by solving the continuity equations. To set up the continuity equations, an approach for computing knots is presented. The basic idea for computing the knots on the two adjacent intervals is as follows. The five ordered data points in a plane determine a set of cubic polynomial function curves and the six ones determine a cubic polynomial function curve uniquely. The knot si at the two adjacent intervals is computed by a way that the consecutive six data points are supposed to be taken from a cubic polynomial curve, then a linear relation among si and other knots is set up, the knot si is obtained by straight forward constructing the cubic polynomial curve. The constructed parametric spline curve has the precision of cubic polynomial function, i.e., if the given data points are taken from a cubic polynomial function f (t), then the constructed cubic parametric spline curve reproduces f (t) exactly. The comparisons of the precision of the new method with other ones showed that when used to construct cubic parametric spline curves, the new method in general gives better approximation than other methods.
作者 张彩明
出处 《计算机学报》 EI CSCD 北大核心 2002年第3期262-268,共7页 Chinese Journal of Computers
基金 图家自然科学基金 (60 173 0 5 2 )资助
  • 相关文献

参考文献1

  • 1苏步青.计算几何[M].上海:上海科技出版社,1982.121-141. 被引量:13

共引文献12

同被引文献159

引证文献20

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部