摘要
本文主要证明一个具有光滑边界的紧黎曼流形,如果有非平凡解,则就等度量同构与双曲空间形式 会的紧区域,这里D~2■是■的Hessian与g是M上的黎曼度量. 还证明关于上述方程的边值问题,只有混合边值问题,而且当c<-1时有解.
In this paper, the authors prove that let M be a compact Riemannian manifold with smooth boundary if has nontrivial solutions, then M is isomorphic to a compact domain which is in hyperbolic space form , where D^2 the Hessian of and g the Riemannian metric on M. And the authors prove there is no solution of boundary conditions except this codition on above equation.
出处
《数学年刊(A辑)》
CSCD
北大核心
2001年第5期657-662,共6页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.19631010)
关键词
双曲空间形式
边值问题
完备黎曼流形
黎曼度量
Compact Riemannian manifold, Hyperbolic space form, Boundary Valued problem