期刊文献+

关于双曲空间形式的一个注记

A REMARK ON HYPERBOLIC SPACE FORM
下载PDF
导出
摘要 本文主要证明一个具有光滑边界的紧黎曼流形,如果有非平凡解,则就等度量同构与双曲空间形式 会的紧区域,这里D~2■是■的Hessian与g是M上的黎曼度量. 还证明关于上述方程的边值问题,只有混合边值问题,而且当c<-1时有解. In this paper, the authors prove that let M be a compact Riemannian manifold with smooth boundary if has nontrivial solutions, then M is isomorphic to a compact domain which is in hyperbolic space form , where D^2 the Hessian of and g the Riemannian metric on M. And the authors prove there is no solution of boundary conditions except this codition on above equation.
出处 《数学年刊(A辑)》 CSCD 北大核心 2001年第5期657-662,共6页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.19631010)
关键词 双曲空间形式 边值问题 完备黎曼流形 黎曼度量 Compact Riemannian manifold, Hyperbolic space form, Boundary Valued problem
  • 相关文献

参考文献2

  • 1Chen Zhihua,Chin Ann Math B,1999年,20卷,1期,51页 被引量:1
  • 2Green R E,Lecture Notes in Mathematics.699,1979年 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部