期刊文献+

带约束的Kantorovich和Wielandt不等式的矩阵形式 被引量:7

Generalized Matrix Versions of the Constrained Kantorovich and Wielandt Inequalities
原文传递
导出
摘要 本文利用矩阵的奇异值分解给出了带约束的Kantorovich不等式的矩阵形式,从而推广了王松桂和邵军1992年  [1]  的结果.并利用此结论得到了一般形式的带约束的Wielandt不等式的矩阵形式. A note by Wang and Shao (1992), in which the constrained Kantorovich inequalities are considered in matrix versions expressed in terms of the loewner tial ordering, is extended to cover nonnegative Hermitian matrices by the singular value decomposition of matrix. Furthermore, the constrained Wielandt inequalities are also investigated.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2002年第1期151-156,共6页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目
关键词 WIELANDT不等式 矩阵形式 奇异值分解 KANTOROVICH不等式 Constrained Kantorovich Wielandt inequalities Singular value decomposition
  • 相关文献

参考文献1

二级参考文献11

  • 1J. K. Baksalary,S. Puntanen.Generalized matrix versions of the Cauchy-Schwarz and Kantorovich inequalities[J]. Aequationes Mathematicae . 1991 (1) 被引量:1
  • 2A. W. Marshall,I. Olkin.Matrix versions of the Cauchy and Kantorovich inequalities[J]. Aequationes Mathematicae . 1990 (1) 被引量:1
  • 3Pecaric J E,Puntanen S,Styan G P H.Some further matrix extensions of the Cauchy_Schwarz and Kantorovich inequalities,with some statistical applications. Linear Algebra and Its Applications . 1996 被引量:1
  • 4Householder,A. S. The theory of matrices in numerical analysis . 1964 被引量:1
  • 5HornR,JohnsonOR.MatrixAnalysis. . 1985 被引量:1
  • 6Eaton,M. L.A maximization problem and its applications to canonical correlation. Journal of Multivariate Analysis . 1976 被引量:1
  • 7Wang S G,Chow S C.Advanced Linear Models. . 1994 被引量:1
  • 8Haynsworth,E. V.Determination of the inertia of a partitioned Hermitian matrix. Linear Algebra and Its Applications . 1968 被引量:1
  • 9Muirhead,R.J.Aspects of Multivariate Statistical Theory. . 1982 被引量:1
  • 10Marshall, A. W.,Olkin, Ⅰ.Matrix version of the Cauchy and Kantorovich inequalities. Aequationes Mathematicae . 1990 被引量:1

共引文献7

同被引文献34

  • 1张文文,柳金甫.Kantorovich不等式的再拓广[J].河北大学学报(自然科学版),1993,13(2):70-72. 被引量:1
  • 2何淦瞳.关于Kantorovich型的矩阵不等式[J].贵州大学学报(自然科学版),2006,23(1):6-8. 被引量:1
  • 3向梅芳,林建华.推广的Wielandt不等式的矩阵形式[J].厦门大学学报(自然科学版),2007,46(4):451-453. 被引量:1
  • 4杨虎.Kantorovich不等式的延拓与均方误差比效率[J].应用数学,1988,4(1):85-90. 被引量:4
  • 5Baksalary J K,Puntanen S. Generalized matrix versions of the Cauchy - Schwarz and Kantotovich inequalities [ J ]. Aequationes Math, 1991,41 : 103. 被引量:1
  • 6Wang Songgui, Shao Jun. Constrained Kantorovich Inequalities and relative efficiency of least squares[J]. J Multi Analysis, 1992, 42: 284-289. 被引量:1
  • 7Greub W, Rheinboldt W. On a generalization of an inequality of L.V. Kantorovich[J]. Proc Amer Math Soc, 1959, 10: 407-415. 被引量:1
  • 8Wang Mingjin. The mean inequality of random variables[J]. Mathematical Inequalities Applications, 2002, 5: 755-763. 被引量:1
  • 9Bloomfield P, Watson G S. The inefficiency of least squares[J]. Biometrika, 1975, 62: 121-128. 被引量:1
  • 10杨虎.Kantorovich不等式的延拓与均方误比差效率.应用数学,1988,:85-85,90. 被引量:1

引证文献7

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部