期刊文献+

一种基于LSI的图像语义检索技术

An approach to semantic-based image retrieval using LSI
下载PDF
导出
摘要 探讨如何将LSI技术应用于图像检索中 ,以实现基于语义的图像检索的技术途径 .给出了一种新的图像索引方法 ,它使用灰色模型GM (1,1)对图像的像素值进行模型化处理 ,并且使用模型参数的概率分布来描述图像 .在此基础上 ,详细讨论了将隐含语义索引技术应用于图像检索中的具体方法 ,并给出了相应的算法 .最后 。 Latent Semantic Indexing (LSI) is a new and promising technique for information retrieval, which has been successfully used for document process and retrieval domains. Within the limits of our knowledge of publish work, only a few papers are concerned with the LSI technique for content based image retrieval. In this paper, the approach to semantic image retrieval using the LSI technique is investigated. A novel image indexing method is introduced, which uses the grey model GM(1,1) and Hilbert space filling curve to model the pixels in an image, and uses the distribution of the GM(1,1) parameters as the image representation. The method to LSI based image retrieval is discussed in detail, and the corresponding algorithms are given. The experimental results are reported and the future work is presented.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2002年第2期105-107,共3页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 湖北省教育厅重点研究项目 (99A10 8)
关键词 基于内容图像检索 图像表示 图像语义 隐含语义索引 灰色模型GM(1 1) 图像处理 LSI技术 content based image retrieval image representation semantic gap image semantic latent semantic indexing grey model GM(1,1)
  • 相关文献

参考文献6

  • 1[1]Niblack W, Barber R, Equitz W, et al. The QBIC project: querying images by content using color, texture and shape. SPIE Proc. Storage and Retrieval for Image and Video Databases, 1993, 1908: 173~187 被引量:1
  • 2[2]Pentland A, Picard R, Scharoff S. Photobook: content-based manipulation of image databases. International Journal of Computer Vision. 1996, 18(3): 233~254 被引量:1
  • 3[3]Sethi L K, Coman I, Day B, et al. Color-wise: a system for image similarity retrieval using color. SPIE Proc. Storage and Retrieval for Image and Video Database Ⅵ, 1998, 3312: 140~147 被引量:1
  • 4[4]Foltz P. Using latent semantic indexing for information filtering. Proc. of ACM SIGOIS Bulletin, 1990, 11(2/3): 40~47 被引量:1
  • 5[5]Sdaroff S, Cascia M L, Sethi S. Unifying textual and visual cues for contented-based image retrieval on the World Wide Web. Computer Vision and Image Understanding, 1999, 75(1/2): 86~98 被引量:1
  • 6[6]Zhao R, Grosky W I. Negotiating the semantic gap: from feature maps to semantic landscapes. Lecture Notes in Computer Science, 2001, 2234: 33~42 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部