期刊文献+

脑电棘波识别和噪声消除的小波变换方法 被引量:1

EEG spikes detection and denoising methods based on wavelet transform
下载PDF
导出
摘要 研究了利用二进小波变换的模极大值识别脑电信号奇异点如棘波和消除噪声的方法,该方法在较好保留原脑电信号奇异信息的同时能有效地消除噪声。进一步讨论了信号与白噪声的奇异性指数的区别,以及小波变换模极大值沿各变换尺度传递的不同特性,并利用该特性区分信号中的奇异点和噪声,能准确识别奇异点的位置。这种奇异性识别技术在信号的特征提取和消除噪声方面有广阔的应用前景。 In this paper,the EEG signal singularity detection and denoising methods based on the dyadic wavelet transform(WT)modulus maxima are studied,and the denoising method can remove noise effectively as well as keep original EES singularity.The singularity Lipschitz exponent difference between signal and noise is discussed.We also compare the performance of signal and noise's WT at difference scale.The EES singularity points(spikes)locate in the positions where the modulus maxima match at different scales.This methods may be applied to signal characteristic extraction and denoising.
出处 《中国医学物理学杂志》 CSCD 2001年第4期208-210,共3页 Chinese Journal of Medical Physics
基金 山东省自然科学基金(Y2000C25)
关键词 脑电 棘波 消噪 奇异指数 小波变换 模极大值 electroencephalosignal(EES) spikes denoising lipschitz exponent wavelet transform modulus maxima
  • 相关文献

参考文献9

二级参考文献11

共引文献131

同被引文献5

  • 1Jiapupan, Tompkins WJ. A Real-time QRS detection algorithm[J].IEEE Trans on BME,1985,32(3):230-237. 被引量:1
  • 2Friesen GM, et, al. A comparison of the noise sensitivity of nine QRS detection algorithms[J]. IEEE Trans on BME, 1990,37(1):85-92. 被引量:1
  • 3Shubha Kadambe. Wavelet transform-based on QRS complex detector[J]. IEEE Trans on BME, 1999,46(7):838-848. 被引量:1
  • 4彭玉华.小波变换与工程应用[M].北京:科学出版社,1993,16. 被引量:1
  • 5蔡立羽,王志中,张海虹.基于小波变换的肌电信号识别方法研究[J].数据采集与处理,2000,15(2):255-258. 被引量:19

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部