期刊文献+

人工神经网络法预测炸药组分的色谱保留值参数 被引量:4

Prediction of Retention Parameters of Explosives by Artificial Neural Network
下载PDF
导出
摘要 以分子拓扑指数作为炸药组分的结构描述符 ,利用反向传播算法 (BP)人工神经网络 ,以Sigmoid函数为传递函数 ,分子连接性指数0 χ ,1χ ,2 χ与边邻接指数 (ε)为输入向量 ,反相高效液相色谱保留值参数logkw 和S为输出向量 ,将输入向量归一化至 - 3~ 3区间 ,输出向量归一化至 0~ 1区间 ,网络精度取 0 5 ,学习步长 η的初始值取0 2 ,动量因子α取 0 5 ,通过对 2 0种炸药的网络模型进行训练 ,建立了炸药分子结构与logkw 和S之间的定量模型。结果表明 ,该模型较好地反映了炸药分子结构与保留值之间的关系 ,预测值与文献所报道实验值的相对误差大部分在± 5 %内 。 The quantitative relationship between the retention parameters and the structure of explosives is discussed Molecular topological indices are used to represent the structure Based on the back propagation algorithm, a quantitative model was established after a training process of a train set containing 20 explosives being completed The Sigmoid function was chosen as the transmit function The retention parameters (log k w and S ) acted as output vectors, while molecular connecting indices ( 0χ, 1χ, 2χ) and edge adjacent indices( ε ) acted as input vectors The input vectors were normalized in the range of -3 3 and the output vectors were normalized in the range of 0 1 The accuracy of network was 0 5 and the beginning value of studying pace ( η ) was 0 2, the momentum factor ( α ) was 0 5 The results showed that the yield model reflected the relationship between the structure and retention index of compounds, and had high accuracy Most of the relative errors were below ±5%
出处 《色谱》 CAS CSCD 北大核心 2001年第4期319-322,共4页 Chinese Journal of Chromatography
关键词 保留值参数 人工神经网络 定量结构-色谱保留相关 分子拓扑指数 炸药组分 预测 反相高效液相色谱 retention parameter artificial neural network quantitative structure retention relationship molecular topological index
  • 相关文献

参考文献6

二级参考文献48

共引文献33

同被引文献75

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部