期刊文献+

算子代数上的可加映射(英文)

The Additive Maps on Operator Algebras
下载PDF
导出
摘要 设 H是 Hilbert空间 ,X是 Banach空间 ,本文刻画了 B0 ( X)上的保幂零可加映射 ,B( X)上的保谱半径可加映射以及 B( H)上的保零化多项式算子的可加映射和线性映射 ,并给出了 von Neumann代数上保正交性或与运算 |· | k 交换的可加映射的具体形式 . Let H be a Hilbert space and X a Banach space. In this paper, the additive maps which preserve nilpotent operators or spectral radius on B 0(X) and B(X), respectively, are characterized; the linear maps and additive maps on B(H) which preserve operators annihilated by a polynomial are classified; the forms of additive maps on von Neumann algebras which preserve orthogonality or commuting with |·| k are obtained.
出处 《山西师范大学学报(自然科学版)》 2001年第3期1-6,共6页 Journal of Shanxi Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目
关键词 可加映射 幂零算子 谱半径 正交性 算子代数 保零化多项式算子 Additive preserver Nilpotent operator Spectral radius Orthogonality
  • 相关文献

参考文献9

  • 1[1]Li C K, Tsing N K. Linear operator preserving problem: A brief introduction and some special techniques[J]. Linear Algebra Appl. , 1992,162-164: 217-235. 被引量:1
  • 2[2]Hou Jinchuan. Rank-preserving linear maps on B(X)[J]. Science in China, 1989,32A(8):929940. 被引量:1
  • 3[3]Brasar M, semrl P. Linear maps preserving the spectral radius[J]. J Funct Anal, 1996,142: 360-368. 被引量:1
  • 4[4]Semrl P. Linear mappings that preserve operators annihilated by a polynomial[J]. J Oper Theo,1996,36:45-58. 被引量:1
  • 5[5]Semrl P. Linear maps that preserve the nilpotent operators[J]. Acta Sci Math (Szeged), 1995,61: 1523-1534. 被引量:1
  • 6[6]Hou Jinchuan, Gao Mingchu. Additive map preserving zero production[J]. Bull Sci Sinica, 1999, 43:2388-2392. 被引量:1
  • 7[7]Molnar Lajos. Two characters of additive * -automorphism of B(H)[J]. Bull Austral Math Soc, 1996,53:391-400. 被引量:1
  • 8[8]Omladic M, Semrl P. Spectrum-preserving additive maps[J]. Linear Algebra Appl, 1991,153:67-72. 被引量:1
  • 9[9]Hadwin Lunch Bunch. Local multiplications on algebra spanned by idempotents[J]. Linear and Mutilinear Algebra, 1994,37:259-263. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部