摘要
茅在近几年发展了一种守恒型的间断跟踪法(见[6],[7]),该跟踪法是以解的守恒性质作为跟踪的机制而不是象传统的跟踪法利用Rankine-Hugoniot条件。本文的目的是对该算法在一维单守恒律的情况进行程序实现,做成一个对任意初值问题都适应的强健的算祛,可处理任意的间断相互作用。在文章的第三节给出了一个数值算例,并与用ENO格式(见[8])所算得的结果进行比较。
In the past few years Mao developed a front tracking method based on conservation (see [6],[7]),which uses the conservation properties of the PDEs rather than the Rankine-Hugoniot conditionsas its tracking mechanism. In this paper, we programmly realize the algorithm for the 1D scalarcoservation laws with convex flux, and thus develop an all-purposed and robust algorithm, whichcan handle any type of discontinuity interastions. In the third section, a numerical example ispresented and compared with the numerical result computed by ENO scheme(see [8]) to show theefficiency of the algorithm.
出处
《应用数学与计算数学学报》
2001年第1期10-18,共9页
Communication on Applied Mathematics and Computation