摘要
非线性网络 N 建立周期振荡的充分必要条件是存在一个满足功率平衡 P =0 ,Q=0 的等效模型 ,这个模型是无限多个线性微变模型Njk的迭加 ,其中起码必须有一个成份满足Pjk≤ 0和Qjk≤ 0 。如果对于任意的微变成份都是Pjk >0和Qjk >0 ,迭加的结果必然有P >0或Q >0 ,则网络N无法寄生任何形式的周期振荡。
Periodic oscillation is established in nonlinear networks N. Its sufficient and necessary conditions are to possess an equivalent model, which satisfies power balance conditions P=0, Q=0. The model is result from superposition of infinite linear microcoonstitaents N\-\{jk\}. Therefore at least there is an infinitesimal component N\-\{jk\} to satisfy P\-\{jk\}≤0 and Q\-\{jk\}≤0. If each and every infinitesimal component is P\-\{jk\}>0 or Q\-\{jk\}>0, the result from superposition in sure P>0 or Q>0. Then the networks, which comprise nonlinear amplifers, can not produce any periodic oscillations of whatever waveforms.\;
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2001年第6期11-15,共5页
Systems Engineering and Electronics
基金
广西自然科学基金资助课题!(9912 0 0 8)
关键词
功率测量
非线性网络
稳定性
迭加法
Power measurement\ \ Equalizer\ \ Nonlinear\ \ Stability