摘要
声子波是由声波波动方程的解构成的一种物理子波 ,如果不考虑吸收和散射 ,声子波的传播是相当简单的 ;相反地 ,数学子波的传播即使在均匀介质中也是极其复杂的 .作为波动方程的解 ,声子波比一般的数学子波更能有效地应用于复杂声波和地震波的分解和分析 .本文从Kaiser的声子波理论出发 ,给出了通过分别引入点源波形的复时间函数和点源虚时间坐标来构成声子波的两种解释 ,并对点源模型的合成地震图和实际复杂模型的地震波资料进行了时 -空域的声子波变换 。
Acoustic wavelet is one type of physical wavelets constructed based on the acoustic wave equation. Unless scattering and absorption occur, the propagation of such wavelets is straightforward; while for mathematical wavelets, even propagation in homogeneous media becomes considerably complicated. As solutions of wave equation, acoustic wavelets are mostly suitable for the decomposition and analysis of complicated acoustic or seismic wave fields. Wu et al. introduced acoustic wavelets into seismic data analysis and opened a new area for the application of physical wavelets to the study of seismic signals. In this paper, based on Kaiser's acoustic wavelet theory, two kinds of construction methods of acoustic wavelet are given through introducing complex time function and imaginary time coordinate of point sources, respectively. The acoustic wavelet transform (AWT) in time space domain is applied both to the synthetic seismograms of point sources and to the seismic data produced by the complicated SEG EAEG salt model. The obtained results further indicate the effectiveness of acoustic wavelet applications to the decomposition of seismic data. [
出处
《地球物理学报》
SCIE
EI
CAS
CSCD
北大核心
2001年第3期369-378,共10页
Chinese Journal of Geophysics
基金
国家基础研究重点项目!( 1 9980 4 0 7)
关键词
声子波变换
地震波资料
分解
数学子波
点源模型
Acoustic wavelet, Acoustic wavelet transform (AWT), Seismic data decomposition.