摘要
利用分数的单位分数分拆技巧,讨论了Diophantine方程4/n=1/x+1/y+1/z,证明除了mod 840的11个剩余类的例外情形,Erdos猜想成立。
By means of the partition of the unit fraction, the Diophantine equation 4/n = 1/x+ 1/y + 1/z are discussed and proved except 11 exceptiens of the residue class modulo - 840,among all the rest. The Erdos hypothesis is tenable.
出处
《固原师专学报》
2001年第3期1-5,共5页
Journal of Guyuan Teachers College