摘要
当前岩土材料的滑移线理论都采用经典塑性理论中的关联流动法则 ,由此得出应力特征线与速度滑移线一致 .而试验得知 ,岩土材料并不服从关联流动法则 ,因而应力特征线与速度滑移线不可能重合 .广义塑性力学的出现 ,从理论上证明了塑性势面与莫尔—库仑屈服面之间成一定的角度 ,因而应按非关联流动法则来研究速度滑移线 .本文简介了广义塑性力学理论 ,给出了具有三个塑性势函数的广义塑性势公式 ,并指出塑性势面与屈服面之间必须相应 ,但不一定相同 .文中导出了基于广义塑性力学 (非关联流动法则 )的速度滑移线方程 ,它与莫尔—库仑屈服条件无关 ,但应力特征线与莫尔—库仑屈服条件有关 .并证明了速度滑移线与应力特征线之间处处都成 φ 2角 .文中以平顶钝角楔体的Prandtl解为例 ,给出了基于非关联流动法则的速度解 ,并指出当 φ=0时 ,本解答与正交解一致 ,φ≠ 0时 ,则两者有较大差异 .
The slip line theory based on the associated flow rule for traditional plastic theory is not accord with the experiment for geotechnical material and the stress characteristic line is not coincide with the velocity line. It is proved that the plastic potential surface intersects the M\|C yield surface with an angle, so that the velocity line must be studied by non\|associated flow rule. In this paper, the generalized plastic mechanics is briefly introduced and the generalized plastic potential formula with three plastic potential functions is given. The yield surfaces are related to the plastic potential surfaces, but it does not means that they are always the same. The velocity slip line equations based on the generalized plastic mechanics(non\|associated flow rule) are derived, which are independent of the M\|C yield condition. Whereas, the stress characteristic line equation is always related to the M\|C yield condition. The angle between the velocity line and the stress characteristic line is φ/2 at every point of intersection. The Prandtl solution of the flat\|roofed obtuse wedge is used as an example for illustration.
出处
《水利学报》
EI
CSCD
北大核心
2001年第6期1-7,共7页
Journal of Hydraulic Engineering
基金
国家自然科学基金资助项目! (196 72 0 73)
关键词
速度滑移线
岩土材料
广义塑性理论
slip line
stress characteristic line
velocity slip line
non\|associated flow rule