期刊文献+

一类带小位移的奇异摄动的DDE数值方法

A Kind of Numeric Method of DDE with Small Shifts and Singular Pertubation Problems
下载PDF
导出
摘要 利用小波-Galerkin方法,对一类带有小位移的线性二阶微分-差分方程(DDE)进行了研究,特别是对奇异摄动问题的边界层性质进行数值探讨。在神经细胞模型中,关于膜电位的第一期望离开时间有类似的边值问题。数值结果表明,当小位移增加但仍保持很小时,解的边界层结构发生改变,甚至被破坏。 In this paper an investigation is initiated of a kind of linear second-order differential-difference equations (DDE) with small shifts by using wavelet-Galerkin, particularly of numerical investigation of singular perturbation problem with layer behavior. Similar boundary-value problems are associated with expected first-exit times of the membrane potential in models of nerve. In particular, this paper focuses on problems with solutions that exhibit layer behavior at one of the boundaries by using Wavelet-Galerkin method. It is shown that the layer behavior can change its character and even be destroyed as the shifts increase but remain small.
作者 陈荣军
机构地区 常州工学院
出处 《常州工学院学报》 2001年第2期17-21,共5页 Journal of Changzhou Institute of Technology
关键词 微分-差分方程 边值问题 奇异摄动 小位移 边界层 小波-Galerkin方法 differential-difference equations boundary-value problems small shifts layer behavior Wavelet-Galerkin
  • 相关文献

参考文献18

  • 1[1]J.Kevorkian and Cole.Perturbation Methods in Applied Mathematics [M].Springer-Verlag,New York,1981. 被引量:1
  • 2[2]P.Lagerstrom.Matched Asymptotic Expansions [M].Springer-Verlag,New York,1989. 被引量:1
  • 3[3]C.G.Lange and R.M.Miura.Singular perturbation analysis of boundary-value problems for differential-difference equations [J].SIAM J.Appl.Math.,1982(42) :502~531. 被引量:1
  • 4[4]…….Singular perturbation analysis of boundary-value problems for differential-difference equations.Ⅱ.Rapid oscillations and resonances [J].SIAM J.Appl.Math.,1985(45):687~707. 被引量:1
  • 5[5]…….Singular perturbation analysis of boundary-value problems for differential-difference equations.Ⅳ.A nonlinear example with layer behavior [J].Studies in Appl.Math.,1991(84):231~273. 被引量:1
  • 6[6]D.R.Smith.Singular perturbation Theory [M].Cambridge University Press,Cambridge,UK,1985. 被引量:1
  • 7[7]R.B.Stein.A theoretical analysis of neuronal variability [J],Biophys,J.,1965(5) 1:173~194. 被引量:1
  • 8[8]H.C.Tuckwell.On the first-exit time problem for temporally homogeneous Markov processes [J].J.Appl.Probab.,1976(13):39~48. 被引量:1
  • 9[9]…….Introduction to Theoretical Neurobiology [M].Vol.2,Cambridge University Press,Cambridge,UK,1988. 被引量:1
  • 10[10]W.J.Wilbur and J.Rinzel.An analysis of Stein's model for stochastic neuronal excitation [J],Biol.Cyberm.,1982(45): 107~114. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部