期刊文献+

非线性积分-微分方程周期边值问题的单调迭代方法

Monotonic Iteration of Nonlinear Integral-differential Equation with Periodic Boundary Condition
下载PDF
导出
摘要 本文考虑Banach空间中非线性积分 -微分方程的周期边值问题 ,利用抽象锥、推广了的比较定理及非线性算子的不动点定理 ,构造出两个单调迭代序列 ,证明了Banach空间中非线性积分 -微分方程具有周期边值的最小解、最大解存在定理。 By using the concept of abstract cone,improved comparable theorem and fixed point theorem of nonlinear operator and by discussing the periodic boundary condition of nonlinear integral differential equation in Banach spaces,this paper gave two monotonic iterative sequences,also verified the minimum and maximum theorem for nonlinear integral differential equation with periodic boundary condition in Banach spaces.
出处 《洛阳工学院学报》 2001年第2期78-82,共5页 Journal of Luoyang Institute of Technology
关键词 非线性积分方程 微分方程 不动点锥 周期边值问题 单调迭代方法 Non linear integral equations Differential eguations Fixed point Cones(mathematics)
  • 相关文献

参考文献5

二级参考文献7

  • 1Shenge G R. Voherra Integral Equations in Abstract Cones and Monotone Iterative Techniques[J], J. Integral Equation, 1985, 9: 161-168. 被引量:1
  • 2Monch H, Flarten G-F V. On the Cauchy Problem for Ordinary Differential Equation in Banach Spaces[J]. Arch,Math. , 1982, 39:153-160. 被引量:1
  • 3Lak V & Leela S. Nonlinear Differential Equation in Abstract Spaces[M]. Pergraman Press, London, 1981. 被引量:1
  • 4Deimling K & Lak V. Quasi-Solutions and Their Role in the Quatitative Theory of Ditterential Equations [J].Non. Anal., 1980, 4: 657-663. 被引量:1
  • 5Lak V etc. Quasi-Solution, Vector lyapunov Functions and Monotone Method [J]. IEEE, Trans. Automat Control, 1981, 26: 1148-1153. 被引量:1
  • 6Lak V and Vatsla A S. Quasi-Solutions and Monotone Method for Systems of Boundary Value Problems[J]. J.M.A.A., 1981, 79(1): 38-47. 被引量:1
  • 7Vatsla A S. Existence of Coupled Minimal and Maximal Periodie Quasi- Solutions for a System of First Order Peridie boundary Value Problems Via Quasi-Solutions Trends in Theory and Fractive of Nolinear Differential Equations[M]. Marecl Dekker, New York, 2984. 被引量:1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部