摘要
Two expressions are introduced to calculate the lithium ion diffusion coefficients in graphite anode as a function of potentials when potentiostatic intermittent titration technique(PITT) is used. The lithium ion diffusion coefficients in graphite derived from effective surface area, which is measured by electrochemical method, are more reliable than those derived simply from radius of graphite particles(calculated from equation (3) and equation (2) respectively). The curves of dQ/dE vs E demonstrate that there are three reversible phase transitions during intercalation or deintercalation of lithium ion in graphite. In the vicinity of the potentials where phase transitions take place, the lithium ion diffusion coefficients in graphite material have three minima in the potential range 10~ 600 mV.
Two expressions are introduced to calculate the lithium ion diffusion coefficients in graphite anode as a function of potentials when potentiostatic intermittent titration technique(PITT) is used. The lithium ion diffusion coefficients in graphite derived from effective surface area, which is measured by electrochemical method, are more reliable than those derived simply from radius of graphite particles(calculated from equation (3) and equation (2) respectively). The curves of d Q/dE vs E demonstrate that there are three reversible phase transitions during intercalation or deintercalation of lithium ion in graphite. In the vicinity of the potentials where phase transitions take place, the lithium ion diffusion coefficients in graphite material have three minima in the potential range 10 similar to 600 mV.
出处
《物理化学学报》
SCIE
CAS
CSCD
北大核心
2001年第5期385-388,共4页
Acta Physico-Chimica Sinica
基金
天津市自然科学基金资助项目&&