摘要
研究了有界凸区域上非齐次散度型二阶椭圆方程- i( aij( X) ju( X) +bi( X) u( X) ) +ci( X) iu( X) +c( X) u( X) =f( X)的非零 H1 0 -解 u的二阶导数的 L2估计 ,得到弱解 u∈H2 ( D)∩H1 0 ( D)且有精确估计‖u‖H2 (D) ≤Cdiam(D) 2 ·‖ f‖ L2 ( D) ,常数 C与区域 D的直径等无关 .
The L 2 resolvent estimates are discussed for the weak solution and its derivatives to the following divergence form elliptic equations in convex domains D - i(a ij (X) ju(X)+b i(X)u(x))+c i(X) iu(X)+c(X)u(X)=f(X) And some optimal estimates for the weak solution u∈H 2(D)∩H 0(D)are giren as follows ‖u‖ H 2(D) ≤C diam(D) 2·‖f‖ L 2(D) Where the constant C is independent of the diameter of the domain D.
出处
《信阳师范学院学报(自然科学版)》
CAS
2001年第1期25-29,共5页
Journal of Xinyang Normal University(Natural Science Edition)
基金
国家教委优秀青年教师基金! ( 1 998-2 0 0 1 )资助项目
宁波市博士基金资助项目!( 0 0 1 1 0 2 0 )