摘要
Under ideally polarizable conditions, TiO2 film electrode/solution electrolyte interface exhibited frequency dispersion, The effects of external factors such as the concentration of KNO3, various electrolytes and applied potentials near the flat band potential on the CPE behavior of TiO2 film electrode were studied in electrolyte solution by using A.C. impedance spectra. It was found that concentration of KNO3 had a significant effect on the CPE exponent n only when the concentration is smaller than 0.1 mol· L- 1. In this concentration range, the CPE exponent n went up with increase of KNO3 concentration, once the concentration was larger than this value, however, the CPE exponent n approached to a constant, irrelevant of the concentration. Near the flat band potential, the influence of applied potential on the exponent n depended on the selected frequency range. When the frequency was in lower range, that is smaller than 0.1 Hz, this influence was obvious,on the other hand, it bore no relation to applied potential in higher frequency. Types of electrolytes only affected the CPE constant Q, having nothing to do with the CPE exponent n.
Under ideally polarizable conditions, TiO2 film electrode/solution electrolyte interface exhibited frequency dispersion. The effects of external factors such as the concentration of KNO3, various electrolytes and applied potentials near the flat band potential on the CPE behavior of TiO2 film electrode were studied in electrolyte solution by using A. C. impedance spectra. It was found that concentration of KNO3 had a significant effect on the CPE exponent n only when the concentration is smaller than 0. 1 mol . L-1. In this concentration range, the CPE exponent n went up with increase of KNO3 concentration, once the concentration was larger than this value, however, the CPE exponent n approached to a constant, irrelevant of the concentration. Near the flat band potential, the influence of applied potential on the exponent n depended on the selected frequency range. When the frequency was in lower range, that is smaller than 0. 1 Hz, this influence was obvious, on the other hand, it bore no relation to applied potential in higher frequency. Types of electrolytes only affected the CPE constant Q, having nothing to do with the CPE exponent n.
出处
《物理化学学报》
SCIE
CAS
CSCD
北大核心
2001年第4期372-376,共5页
Acta Physico-Chimica Sinica
基金
国家自然科学基金资助项目