期刊文献+

三倍频振动边界微腔中的违反弱不等式的量子场

Quantum Field Violating Weak Inequality Exists in a Micro-cavity With a Mirror Vibrating at the Third Resonance Frequency
下载PDF
导出
摘要 在三倍频振动边界一维光学微腔中 ,电磁场基模和第二个模的等时二阶相干度的基础上 ,推论出微腔中光场具有违反Cauchy Schwarz场的非经典行为 。 On the basis of the second order correlation function of the fundamental mode and the second mode for the electromagnetic field in one dimensional optical micro cavity with a mirror vibrating at the third resonance frequency, a non classical behavior violating Cauchy Schwarz inequality is derived, which provides a theoretical reference for further research of non classical attributes of that field.
出处 《武汉城市建设学院学报》 2001年第1期34-36,共3页 Journal of Wuhan Urban Construction Institute
关键词 三倍频 光学微腔 电磁场模 量子场 third resonance frequency optical micro cavity electromagnetic field modes
  • 相关文献

参考文献9

  • 1[1]Law C.K. Resonance Response of the Quantum Vacuum to an Oscillating Boundary[J]. Phys. Rev. Lett.,1994, 73(14):1*!931-1*!934. 被引量:1
  • 2[2]Wu Ying et al. Radiation Modes of a Cavity With a Resonantly Oscillating Boundary[J]. Phys. Rev., 1999, A59(2):1*!662-1*!666. 被引量:1
  • 3[3]Dodonov V.V., Klimov A.B. Generation and Detection of Photon in a Cavity With a Resonantly Oscillating Boundary[J]. Phys. Rev., 1996, A53(4):2*!664-2*!682. 被引量:1
  • 4[4]Jauregui R., Villarreal C. Transition Probabilities of Atomic Systems Between Moving Walls[J]. Phys. Rev., 1996, A54(4):3*!480-3*!488. 被引量:1
  • 5[5]Jaekel M.T., Reynaud S. Motional Casimir Force[J]. J.Phys.,1992,I.France 2:149-165. 被引量:1
  • 6[6]Mancini S., Man'ko V.I., et al. Ponderomotive Control of Quantum Macroscopic Coherence[J]. Phys. Rev., 1997, A55(4):3042-3050. 被引量:1
  • 7[7]Bose S., Jacobs K., et al. Preparation of Nonclassical States in Cavities With a Moving Mirror[J]. Phys. Rev., 1997, A56(5):4175-4186. 被引量:1
  • 8[8]Law C.K. Effective Hamiltonian for the Radiation in a Cavity With a Moving Mirror and a Time-varying Dielectric Medium[J]. Phys. Rev., 1994, A49(1):433-437. 被引量:1
  • 9[9]Wu Ying et al. Dynamics of the Quantized Adiation Field in a Cavity Vibrating at the Fundamental Frequency[J]. Phys. Rev., 1999, A59(4):3032-3037. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部