摘要
在LF单位区间I(L)的底集上引入自然序,利用该序的内蕴拓扑揭示I(L)的更深层的特性。得到I(L)是超F紧的、连通的,且当L≠{0,1}时,其底空间均为平庸空间。
We introduce natural orders to the underlying Sets of the LF-unit intervals I(L). Using intrinsic topologies of these orders, we prove that for every Fuzzy lattice L, I(L) is ultra-F-compact, connected and its underlying space is trivial (L≠{0,1}).
关键词
LF单位区间
内蕴拓扑
紧性
连通性
LF-unit interval, Intrinsic topology, Compactness, Connectedness