摘要
基于对拟线性函数的深入研究,利用凸集分离定理和回收锥的性质,对由 Rn上拟线性函数构成的参数约束集,给出了在 Berge意义下当参数变化时,约束集产生的映射是下半连续的一个重要结论.利用该结论,可以很方便地得出拟线性规划稳定性的一系列结果.
Based on the study of the properties of quasilinear function and recession cone of convex set and by utilizing convex set seperation theorem, parameter constraint set decided by some quasilinear functions on Rn was dealt with.An important theorem was obtained that constraint set mapping is lower semicontinuous (in Berge's meaning) when parameter constraint set changes.According to the theorem, some conclusions on the stability of quasilinear programming can be reached.
出处
《安徽机电学院学报》
2001年第1期16-21,共6页
Journal of Anhui Institute of Mechanical and Electrical Engineering
基金
安徽省跨世纪人才基金安徽省教育厅自然科学基金!(2000jl033)
关键词
拟线性函数
回收锥
集值映射
下半连续性
参数规划
稳定性
quasilinear function
recession cone
point-to-set mapping
lower semicontinuous
parametric programming
stability