期刊文献+

Effects of the position of silver nanoprisms on the performance of organic solar cells 被引量:1

Effects of the position of silver nanoprisms on the performance of organic solar cells
原文传递
导出
摘要 Silver nanoprisms(AgNPs) affect the performance of organic solar cells(OSCs) in different ways depending on their positions in the device. To investigate this issue, we incorporate AgNPs in different positions of OSCs and compare their performance. The power conversion efficiency(PCE) is improved by 23.60% to 3.98% when the AgNPs are incorporated in front of the active layer. On the other hand, when AgNPs are incorporated in the back of the active layer, the short-circuit current density(JSC) is improved by 17.44% to 10.84 mA/cm2. However, if AgNPs are incorporated in the active layer, both open-circuit voltage(VOC) and JSC are decreased. We discuss the position effect on the device performance, clarify the absorption shadow and exciton recombination caused by AgNPs, and finally indicate that the optimal position of plasmonic AgNPs is in front of the active layer. Silver nanoprisms (AgNPs) affect the performance of organic solar cells (OSCs) in different ways depending on their positions in the device. To investigate this issue, we incorporate AgNPs in different positions of OSCs and compare their performance. The power conversion efficiency (PCE) is improved by 23.60% to 3.98% when the AgNPs are in- corporated in front of the active layer. On the other hand, when AgNPs are incorporated in the back of the active layer, the short-circuit current density (Jsc) is improved by 17.44% to 10.84 mA/cm2. However, if AgNPs are incorporated in the active layer, both open-circuit voltage (Voc) and Jsc are decreased. We discuss the position effect on the device performance, clarify the absorption shadow and exciton recombination caused by AgNPs, and finally indicate that the optimal position ofplasmonic AgNPs is in front of the active layer.
出处 《Optoelectronics Letters》 EI 2014年第4期253-257,共5页 光电子快报(英文版)
基金 supported by the National Natural Science Foundation of China(No.60676051) the Natural Science Foundation of Tianjin(No.07JCYBJC12700) the Foundation of Key Discipline of Material Physics and Chemistry of Tianjin
  • 相关文献

参考文献19

  • 1LI Ming-yang, HAN Xue-song, XU Xin-rui, MA Chun-yu, YANG Li-ying, QIN Wen-jing, YIN Shou-gen and ZHANG Feng-ling, Journal of Optoelectron-ics.Laser 24, 1673 (2013). (in Chinese). 被引量:1
  • 2LI Wei-min, GUO Jin-chuan and ZHOU Bin, Journal of Optoelectronics-Laser 23, 1274 (2012). (in Chinese). 被引量:1
  • 3PEI Jia-ning, TAO Jin-long, ZHOU Yin-hua, DONG Qing-feng, LIU Zhao-yang, LI Zai-fang, CHEN Fei-peng and ZHANG Ji-bo, Solar Energy Materials and Solar Cells 95, 3281 (2011). 被引量:1
  • 4D. H. Wang, D.Y. Kim, K. W. Choi, J. H. Seo, S. H. Im, J. H. Park, O. O. Park and A. J. Heeger, Angewandte Chemie 50, 5519 (2011). 被引量:1
  • 5C. H. Kim, S. H, Cha, S. C. Kim, M. Song, J. Lee, W. S. Shin, S. J. Moon, J. H. Bahng, N. A. Kotov and S. H. Jin, ACS Nano 5, 3319 (2011). 被引量:1
  • 6QIAO Lin-Fang, WANG Dan, ZUO Li-jian, YE Yu-qian, QIAN Jun, CHEN Hong-zheng and HE Sai-ling, Ap- plied Energy 88, 848 (2011). 被引量:1
  • 7H. A. Atwater and A. Polman, Nature Materials 9, 205 (2010). 被引量:1
  • 8H. S. Noh, E. H. Cho, H. M. Kim, Y. D. Han and J. Joo, Organic Electronics 14, 278 (2013). 被引量:1
  • 9LI Xuan-hua, C. W. C. Ho, LU Hai-fei, Sha Wei E. I. and A, H. Pui, Advanced Functional Materials 23, 2728 (2013). 被引量:1
  • 10A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer and D. S, Ginger, Nano Letters 10, 1501 (2010). 被引量:1

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部