期刊文献+

半空间内洞室在冲击荷载作用下的瞬态响应

Transient response of cavity in half-space subjected to shock load
下载PDF
导出
摘要 为了研究外界冲击力对地下洞室及周围土体的影响,对半空间弹性土体圆柱形洞室在突加反平面冲击荷载作用下的瞬态响应进行探讨.将列车急刹车时对隧道产生的冲击力简化为半无限弹性体中突加在圆柱形洞室表面沿轴线方向的均布荷载,利用残余变量法求得频域解,运用Durbin提出的拉普拉斯数值逆变换给出问题的数值解,并将计算结果与静力情况下的结果进行比较,分析土体应力和位移随时间、弹性波的传播距离以及夹角的变化,结果表明:波到达后,该点土体的应力和位移均瞬间增大,随后慢慢减小并逐渐趋于静力值,波向外发散传播,并沿半径方向衰减;对于相同的传播距离上的各点,最大动应力和动位移与夹角无关;应力和位移最后的稳定值随着夹角的增大而增大. In order to investigate the impact of external impact force on the underground cavern and surrounding soil ,the transient response to sudden anti-plane shock load of an elastic soil body half-space containing a cylindrical cavity was studied. The train impact load in tunnels was simplified to uniform sudden load along the axial direction applied on cylindrical cavity buried in the elastic soil half-space. The frequency domain solutions were obtained using residual variable method. And the Laplace numerical solutions of the problem were presented by the Laplace numerical inversion proposed by Durbin and compared with the static results. The variation of the stress and displacement with respect to the time, the propagation distance of elastic wave and the angle were presented. The results showed that: the stress and displacement of the receive point remain zero before the wave arrivals; until the shear wave strikes, the stress and displacement of that point increase abruptly, then reduce to the static value gradually; the Soil displacement and stress responses attenuate along the radial direction; given a same radius, the maximum dynamic stress and displacement are almost independent of angle. However, the stable values grow up as angle increases.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2014年第6期1043-1048,共6页 Journal of Zhejiang University:Engineering Science
基金 高速铁路基础研究联合基金重点资助项目(U1234204)
关键词 半空间 圆柱形孔洞 反平面 冲击荷载 拉普拉斯数值逆变换 half-space cylindrical cavity anti-plane shock load Laplace numerical inversion
  • 相关文献

参考文献31

  • 1PAO Y H, MOW C C. Diffraction of elastic waves and dynamic stress concentrations[M]. US: Adam Hillier Ltd, 1973. 被引量:1
  • 2LEE J K, MAL A K. A volume integral equation tech- nique for multiple scattering problems in elastodynamies [J]. Applied Mathematics and Computation, 1995, 67 (1-3): 135-159. 被引量:1
  • 3MANOLIS G- D. Elastic wave scattering around cavities in inhomogeneous continua by the BEM [J]. Journal of Sound and Vibration, 2003, 266(2): 281- 305. 被引量:1
  • 4FANG X Q, HU C, HUANG W H. Dynamic stress of a circular cavity buried in a semi-infinite functionally graded piezoelectric material subjected to shear waves [J]. European Journal of Mechanics A/Solids, 2007, 26 (6) : 1016 - 1028. 被引量:1
  • 5JIANG L F, ZHOU X L, WANG J H. Scattering of a plane wave by a lined cylindrical cavity in a poroelastic half-plane[J]. Computers and Geotechnics, 2009, 36 (5) : 773 - 786. 被引量:1
  • 6LIN C H, LEE V W, TODOROVSKA M I, T et al. Zero-stress, cylindrical wave functions around a circular underground tunnel in a flat, elastic halt-space: Incident P-waves[J]. Soil Dynamic and Earthquake Engineering, 2010, 30(10) : 879 - 894. 被引量:1
  • 7EASON G. Propagation of waves from spherical and cy- lindrical cavities [J]. The Journal of Applied Mathemat- ics and Physics, 1963, 14(1) : 12 - 22. 被引量:1
  • 8GLENN L A, KIDDER R E. Blast loading of a spherical container surrounded by an infinite elastic medium[J]. Journal of Applied Mechanics, 1983, 50(4): 723- 726. 被引量:1
  • 9张庆元,战人瑞.爆轰载荷作用下球形空腔的动力响应[J].爆炸与冲击,1994,14(2):182-185. 被引量:21
  • 10ILI X, FLORES-BERRONES R. Time-dependent be- havior of partially sealed circular tunnels [J]. Comput- ers and Geotechnics, 2002, 29(6) : 433 - 449. 被引量:1

二级参考文献17

  • 1杨峻,宫全美,吴世明,胡亚元.饱和土体中圆柱形孔洞的动力分析[J].上海力学,1996,17(1):37-45. 被引量:22
  • 2CHEUNG Y K,ZHU J X. Dynamic interaction analysis of a circular cylindrical shell of finite length in a halfspace[J]. Earthquake Engineering & Structural Dynamics,1992,21(9): 799-809. 被引量:1
  • 3ABOZENA A M. Radiation form a finite cylindrical explosive source[J].Geophysics,1977,42(7): 1384-1393. 被引量:1
  • 4ZAKOUT U, AKKAS N. Transient response of a cylindrical cavity with and without a bonded shell in an infinite elastic medium[J]. International Journal of Engineering Science, 1981,19(5):1341-1352. 被引量:1
  • 5SENJUNTICHAI T, RAJAPAKSE R K N D. Transient response of a circular cavity in a poroelastic medium[J]. International Journal for Numerical and Analytical Method in Geomechanics, 1993, 17(5): 357-383. 被引量:1
  • 6XIE Kanghe, LIU Ganbin, SHI Zuyuan. Dynamic response of partially sealed circular tunnel in viscoelastic saturated soil[J]. Soil Dynamic and Earthquake Engineering, 2004, 24(3): 1003-1011. 被引量:1
  • 7BIOT M A.Mechanics of deformation and acoustic propagation in porous medium[J].Journal of Applied Physics,1962,33(4):1482-1498. 被引量:1
  • 8楼梦麟 林皋.黏弹性地基中人工边界的波动反射效应.水利学报,1986,22(6):20-30. 被引量:1
  • 9DURBIN F. Numerical inversion of Laplace transformation : An efficient improvement to Durbin and Abateps method[J]. The Computer Journal , 1974 ,17 (4) : 371-376. 被引量:1
  • 10HONIG G, HIRDES U. A method for the numerical inversion of Laplace transforms[J]. Journal of Computational and Applied Mathematics, 1984, 10(1): 113-132. 被引量:1

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部