期刊文献+

Space time fractional KdV Burgers equation for dust acoustic shock waves in dusty plasma with non-thermal ions 被引量:2

Space time fractional KdV Burgers equation for dust acoustic shock waves in dusty plasma with non-thermal ions
下载PDF
导出
摘要 The KdV-Burgers equation for dust acoustic waves in unmagnetized plasma having electrons, singly charged non- thermal ions, and hot and cold dust species is derived using the reductive perturbation method. The Boltzmann distribution is used for electrons in the presence of the cold (hot) dust viscosity coefficients. The semi-inverse method and Agrawal variational technique are applied to formulate the space-time fractional KdV-Burgers equation which is solved using the fractional sub-equation method. The effect of the fractional parameter on the behavior of the dust acoustic shock waves in the dusty plasma is investigated. The KdV-Burgers equation for dust acoustic waves in unmagnetized plasma having electrons, singly charged non- thermal ions, and hot and cold dust species is derived using the reductive perturbation method. The Boltzmann distribution is used for electrons in the presence of the cold (hot) dust viscosity coefficients. The semi-inverse method and Agrawal variational technique are applied to formulate the space-time fractional KdV-Burgers equation which is solved using the fractional sub-equation method. The effect of the fractional parameter on the behavior of the dust acoustic shock waves in the dusty plasma is investigated.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第7期316-322,共7页 中国物理B(英文版)
关键词 dust-acoustic waves reductive perturbation method modified Riemann-Liouville fractionalderivative space-time fractional KdV-Burgers equation dust-acoustic waves, reductive perturbation method, modified Riemann-Liouville fractionalderivative, space-time fractional KdV-Burgers equation
  • 相关文献

参考文献51

  • 1Shukla P K and Mamun A A 2002 Introduction to Dusty Plasma Physics (BriStol: Institute of Physics). 被引量:1
  • 2Zhang L P and Xue J K 2008 Chin. Phys. B 17 2594. 被引量:1
  • 3Guo Z R, Yang Z Q, Yin B X and Sun M Z 2010 Chin. Phys. B 19 115203. 被引量:1
  • 4Qi X H, Duan W S, Chen J M and Wang S J 2011 Chin. Phys. B 20 025203. 被引量:1
  • 5Yang X E Wang S J, Chen J M, Shi Y R, Lin M M and Duan W S 2012 Chin. Phys. B 21 055202. 被引量:1
  • 6Ren Y C, Wang X S and Wang X G 2012 Chin. Phys B 21 115201. 被引量:1
  • 7Akhtar N, Mahmood S and Saleem H 2007 Phys. Lett. A 361 126. 被引量:1
  • 8Asbridge J R, Bame S J and Strong I B 1968 J. Geophys. Res. 73 5777. 被引量:1
  • 9Feldman W C, Anderson S J, Bame S J, Gary S P, Gosling J T, Mc- Comas D J, Thomsen M E Paschmann G and Hoppe M M 1983 J. Geophys. Res. 88 96. 被引量:1
  • 10Elwakil S A, Elgarayhi A, E1-Shewy E K, Mahmoud A A and E1-Attafi M A 2013 Astrophys. Space Sci. 343 661. 被引量:1

同被引文献6

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部