期刊文献+

带跳随机延迟微分方程半隐式Euler方法的均方指数稳定性

Mean-square exponential stability of the semi-implicit Euler method for stochastic delay differential equations with jumps
下载PDF
导出
摘要 研究带跳随机延迟微分方程半隐式Euler方法的均方指数稳定性.将半隐式Euler方法应用到维纳过程和泊松过程驱动下的非线性随机延迟微分方程上进行讨论,给出了半隐式Euler方法的均方指数稳定性的条件. In this paper,the authors investigated the mean square exponential stability of the semi-implicit Euler method for stochastic delay differential equations with jumps. The semi implicit Euler method applied to the nonlinear stochastic delay differential equations which driven by Wiener process and Poisson process,and gave conditions about mean square exponential stability of the semi-implicit Euler method.
作者 徐丽丽 刘翙
出处 《湖北师范学院学报(自然科学版)》 2014年第2期70-73,共4页 Journal of Hubei Normal University(Natural Science)
关键词 非线性带跳随机延迟微分方程 半隐式EULER方法 均方指数稳定 nonlinear stochastic delay differential equations with jumps semi-implicit Euler method mean-square exponential stable
  • 相关文献

参考文献6

  • 1Huang Chengming. Exponential mean square stability of numerical methods for systems of stochastic differential equations [ J ]. J Appl Math Comput, 2012,236:4016 - 4026. 被引量:1
  • 2Li Qiyong, Gan Siqing. Mean - square exponential stability of stochastic theta methods for nonlinear stochastic delay integro - differential equations[ J]. J Appl Math Comput,2012, 39 : 69 - 87. 被引量:1
  • 3Li Qiyong,Gan Siqing. Almost sure exponential stability of numerical solutions for stochastic delay differential equations with jumps [ J ]. J Appl Math Comput,2011, 37 : 541 - 557. 被引量:1
  • 4Wu F, Mao X, Szpruch L. Almost sure exponential stability of numerical solutions for stochastic delay differential equations[J]. Numer Math, 2010,115:681 -697. 被引量:1
  • 5Tan Jiangguo, Wang Hongli. Mean - square stability of the Euler - Maruyama method for stochastic differential delay equations with jumps [ J ]. International Journal of Computer Mathematics,2011,88 (2) :421 - 429. 被引量:1
  • 6杨茜.带跳随机延迟微分方程半隐式Milstein数值方法的均方稳定性[J].佳木斯大学学报(自然科学版),2009,27(6):948-952. 被引量:1

二级参考文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部