期刊文献+

基于IMM-UKF的航天测控雷达机动目标跟踪 被引量:4

Maneuvering target tracking of aerospace measurement & control radar based on IMM-UKF algorithm
下载PDF
导出
摘要 航天测控中雷达的测量值具有较大的随机误差,用雷达的测量值直接解算运载火箭的外弹道跟踪精度较低。提出基于IMM-UKF的雷达机动目标跟踪方法,适应了航天发射任务中运载火箭在不同时段具有不同机动特性条件下对机动目标稳定精确跟踪的需要。仿真结果表明和利用雷达测量值直接解算目标弹道的方法以及采用单一运动模型的UKF滤波方法相比,IMM-UKF算法具有更高的外弹道跟踪精度,并且算法的收敛速度满足航天测控外弹道跟踪的实时性要求。 The great tracking error of radar to maneuvering target exists in aerospace measurement & control if the exterior trajectory of a launcher is calculated directly according to the measured value of radar because of the high random error. An IMM-UKF based maneuvering target tracking method of radar which satisfies the motion characteristic of the carrier rocket better is presented. The simulation result shows that the IMM-UKF algorithm has higher accuracy of exterior ballistic tracking than that of the methods such as direct calculation method of target trajectory and UKF filtering method based on single motion model. In ad-dition,the convergence velocity of IMM-UKF algorithm can meet the real-time requirement of exterior ballistic tracking in aero-space measurement & control.
出处 《现代电子技术》 2014年第13期43-46,共4页 Modern Electronics Technique
关键词 航天测控 IMM—UKF 机动目标跟踪 外弹道跟踪 aerospace measurement and control IMM-UKF maneuvering target tracking exterior ballistic tracking
  • 相关文献

参考文献7

  • 1刘利生主编,中国人民解放军总装备部军事训练教材编辑工作委员会编..外弹道测量数据处理[M].北京:国防工业出版社,2002:464.
  • 2SINGER R A. Estimating optimal tracking filter performance for manned maneuvering targets [J]. IEEE Transactions on AES, 1970, 6(4): 473-483. 被引量:1
  • 3ZHOU H. A "current" statistical model and adaptige algorithm for estimating maneuvering targets [J]. AIAA Journal of Gui- dance, 1984, 7(5): 596-602. 被引量:1
  • 4BLOM H A P, BAR-SHALOM Y. The interacting multiple model algorithm for systems with Markovian switching coeffi- cients [J]. IEEE Transactions on Automatic Control, 1988, 33 (8) : 780-783. 被引量:1
  • 5BIERMAN G J. Sequential square root filtering and smoothing of discrete linear system [J]. Automation 1974, 10: 147-158. 被引量:1
  • 6JULIER S J, UHLMANN J K. A new extension of the Kalman filter to nonlinear systems [C]// The 11th International Sympo- sium on Aerospace/Defense Sensing, Simulation and Controls. Orlando, FL, USA: SPIE, 1997:145-157. 被引量:1
  • 7GORDON N J, SALMOND D J, SMITH A F M. Novel ap- proach to nonlinear/non-Gaussian Bayesian state estimation [J]. IEEE Proceeding on radar and signal processing, 1993, 140 (2): 107-113. 被引量:1

同被引文献35

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部